

Lee Creek Reservoir and Lee Creek

Prepared for the City of Fort Smith June 1, 2015

CONTENTS

Executive Summary	1
1.0 Introduction	3
2.0 Watershed Description	6
3.0 Watershed Assessment	10
3.1 Water Quality	10
3.1.1 Fort Smith Utility Ongoing Monitoring Program	10
3.1.2 Water Quality Data Collected Specifically for the WMP	15
3.2 Lee Creek Reservoir	23
3.3 Unified Stream Assessment	
3.4 Geomorphology and Channel Stability	
3.5 Ecological Condition	35
3.5.1 Macroinvertebrate Community	35
3.5.2 Fish Community	
3.5.3 Periphyton Community	40
3.5.4 Habitat for Aquatic Biota	41
3.6 Hydrologic Analysis	42
3.7 GIS Non-point Source Assessment	46
3.7.1 Land Use by Watershed	46
3.7.2 Riparian Buffer Impacts	47
3.7.3 Land Slope	48
3.7.4 Soils	49
3.7.5 Agricultural Animal Numbers	49
3.7.6 Unpaved Roads	50
4.0 Loading Analysis	51
4.1 Delineation of Lee Creek Loads	
4.2 Recommended Load Reductions	54
5.0 Pollution Source Assessment	57
5.1 Point Sources	
5.2 Non-point Sources	
5.3 Source Water Assessment by ADH	
5.4 Priority Sub-Watershed Ranking	62
5.5 Modeling NPS Loads and Reduction Potential	
5.6 Discussion of Priority Ranking	68
6.0. Recommendations for Watershed Management	70
6.1 Land-Use and Runoff Management	
6.2 Stream Corridor Restoration/Enhancement	
6.3 Implementation Schodulo	i Э 70
6.4 Interim Milestones	
0.4 Interniti Millestonies	
o.o Auaptive ivianagement	
7.0 Water Quality Targets (Success Criteria) and Monitoring	81

i

CONTENTS (cont)

8.0	Public Involvement, Education and Stakeholders	82
9.0	Technical and Financial Assistance	85
10.0	References Cited	88

FIGURES

Figure 1. Land-uses in the Lee Creek Watershed.	8
Figure 2. Land Surface Slope in the Lee Creek Watershed	9
Figure 3. FSU Sample Locations in Lee Creek Watershed	11
Figure 4. Average FSU Phosphorous Data.	13
Figure 5. FSU Average TOC Data	14
Figure 6. FSU Average TSS Data.	14
Figure 7. Lee Creek Sub-Watersheds and Sample Stations in each Sub-Watershed	utilized
during this Study.	16
Figure 8. Jenkins Creek at JC-1 and Lee Creek at LC-1 during Baseflow Conditions.	18
Figure 9. Average TSS, Baseflow versus Storm Flow.	20
Figure 10. Average Total Phosphorus, Baseflow versus Storm Flow.	20
Figure 11. MFC-1 during Storm Event. Figure 12. LLC-2 during Storm Event	21
Figure 12. LLC-2 during Storm Event.	21
Figure 13. Comparison of Lee Creek Reservoir and other Type B Lakes in Northwes	st
Arkansas	25
Figure 14. Average Trophic State Index in Lee Creek Reservoir in two Sampling Loc	ations in
the Summer (July-August) and Winter (January-February) Months. TSI=	Frophic
State Index, SD= Secchi Depth, TP= Total Phosphorus, Chl- α = chlorophy	/ll-α27
Figure 15. Locations of Selected Stream Impacts Identified During the USA in Uppe	r Lee
Creek	30
Figure 16. Comparison of an Impacted Riparian Buffer (little to none) to a well devel	oped
Riparian Buffer.	31
Figure 17. Stream Banks with Very High Bank Erosion Hazard in Lower Lee Creek.	32
Figure 18. Typical Storm Water Outfall from Pasture in Lee Creek.	
Figure 19. MFC Bedrock Stream Bottom Promotes Algal Growth.	
Figure 20. Comparison of the Annual Average and Peak Flows of the Study Sites in	the Lee
Creek Watershed.	43
Figure 21. Storm Hydrograph from Little Lee Creek at Nicut, Oklahoma (LLC2) on Ja	anuary
25, 2012. Hydrograph Data was Collected from USGS.	
Figure 22. Relationship of Stage versus Flow at Mountain Fork Creek Gauging Stati	on45
Figure 23. Daily Average Flow for the Five Sub-Watersheds.	
Figure 24. Sediment Plume entering Cove Creek from Unpaved Road Runoff	50
Figure 25. Storm flow load of TSS in pounds/acre.	53
Figure 26. Pounds of storm flow nutrients on a per acre basis.	
Figure 27. TSS storm flow loading proportional to entire watershed	
Figure 28. Comparison of TSS levels in Lee Creek WS to Boston Mountain least dis	turbed
streams	
Figure 29. Comparison of total phosphorus levels in Lee Creek WS to Boston Moun	tain least
disturbed streams	

ii

FIGURES (cont)

Figure 30.	Comparison of NO3+NO2-N levels in Lee Creek WS to Boston Mountain least	
	disturbed streams	56
Figure 31.	Ranking of critical sub-watersheds producing TSS	58
Figure 32.	Overall sources of Phosphorus.	65
Figure 33.	Overall sources of sediment	66
Figure 34.	Overall sources of Phosphorus.	67
Figure 35.	Streambank erosion on CC and the MFC	68
Figure 36.	Natural gas wells in the watershed.	74
Figure 37.	Generic representation of riparian buffer zone	75

TABLES

Table 1.	EPA Nine Minimum Elements	3
Table 2.	AWWA G300 Standard	4
Table 3.	Summary of Historical Monitoring Data Collected by FSU.	.12
Table 4.	Sample Station Descriptions.	.17
Table 5.	Summary of Average Baseflow and Storm Flow Water Quality	.19
Table 6.	Boston Mountain Assessment Criteria Standard.	.21
Table 7.	Averages of Summary Data (1± stdev) from Lee Creek Reservoir	.24
Table 8.	Carlson's Trophic State Index	.26
Table 9.	Summary of Carlson's Trophic Index Scores for L1 and L2 in the Summer and	
١	Ninter Months in Lee Creek Reservoir.	.27
Table 10.	Summary of Pertinent Findings from the USA.	.29
Table 11.	Summary of Geomorphic Characteristics.	.34
Table 12.	Comparison of SCI Metrics for First Quarter Samples from Lee Creek Watershed	.37
Table 13.	Comparison of SCI Scores for First Quarter Samples from Lee Creek Watershed	.38
Table 14.	Comparison of Fish Community Tolerance Structure, Functional Feeding Groups,	
	and IBI Scores Among Stations within Lee Creek and Lee Creek	
	Watershed for 2008-2013.	.39
Table 15.	Summary of Periphyton Abundance (coverage) Assessment.	.40
Table 16.	Summary of Discharge Data from September 2004-2014, Collected from	
	USGS Gauge Data	.43
Table 17.	Percent Land Use by Sub-Watershed.	.47
Table 18.	Summary of Impacted Riparian Buffer Analysis	.48
Table 19.	Summary of Land Slope Analysis.	.49
Table 20.	Agricultural Animal Estimates per Sub-Watershed.	.50
Table 21.	Summary of Unpaved Roads in Lee Creek Watershed	.51
Table 22.	Average Loading of key constituents.	.52
Table 23.	Loading of key storm flow constituents on a per acre basis.	.52
Table 24.	NPDES Permit Limits for Cedarville Public Schools and Devils Den State Park	.59
Table 25.	Ranking of each impact Category for Each Sub-Watershed.	.63
Table 26.	Total Scores and Matrix Ranking.	.63
Table 27.	Summary of Model Predicted 155 Loading.	.65
Table 28.	Summary of Model Predicted Phosphorus Loading.	.66
Table 29.	Priority ranking of Lee Creek impacts/disturbances from worst to least.	.69
Table 30.	Key management measures to encourage, develop and manage.	.//
Table 31.	Recommend watershed management practices.	.78
i able 32.		.79

iii

TABLES (cont)

Table 33.	Interim Measurable Milestones	80
Table 34.	Private/Match Funding Entities for Watershed Management.	86
Table 35.	Funding Opportunities for Watershed Management.	87

APPENDICES

- Appendix A Appendix B Appendix C
- FSU Water Quality Data GBM^c Water Quality Data USA Field Data Forms
- Non-Point Source Matrix
- Appendix D Appendix E WTM Modeling

Executive Summary

This watershed management plan (WMP) has been developed based largely on the 2005 EPA guidance and addresses EPA's nine minimum control measures. The plan complies with AWWA G300 Standard and contains many of the required components of a Source Water Protection strategy. Historical data collected by the Fort Smith Utility (FSU) and new data (water quality and unified stream assessments) collected during this project have been utilized in preparation of this plan.

Total suspended solid (TSS) levels appear to be a principal concern in the watershed at this time and are known to be elevated due to storm water runoff from the numerous unpaved roads in the watershed, and from stream bank erosion. A substantial portion of the watershed is agricultural. Some areas, especially adjacent to agricultural land, lack riparian buffers and have ongoing erosion issues that could export nutrients to the waters. Lee Creek is in the nutrient surplus area, designated by the Arkansas legislature. Nutrient levels have not yet been found to be alarmingly high. However, concerns over increased agricultural activity in the watershed potentially threaten Lee Creek in the years to come if not protected.

This WMP has been developed based primarily on evaluation/analysis of existing watershed monitoring data collected by the FSU over the past several years then integrated with the existing water resource management documents and new data collected during this project to form a comprehensive WMP. The WMP includes identification of critical sub-watersheds at a small scale (~12 digit HUC) and ranked implementation measures to reduce non-point source pollution loading from critical areas.

The Lee Creek watershed (HUC-11110104 (NRCS WBD)) is approximately 447 mi² in size. The watershed is located in the Boston Mountains and Arkansas River Valley Ecoregions (Omernick, 1987), primarily in Crawford and Washington Counties in Arkansas and Adair and Sequoyah counties in Oklahoma. The watershed drains directly into the Arkansas River Basin. Lee Creek has an impoundment (Lee Creek Reservoir) just upstream of its confluence with the Arkansas River that serves as a drinking water source for Fort Smith. The water supply serves a population of approximately 200,000 (US Census, 2000).

1

Land use in the watershed is mostly forest and pasture. The watershed is dominated by forest land-uses (79%). Agricultural land-uses (mostly pasture) comprise a fairly high percentage (13%) of the watershed.

In general, water quality during baseline flow events, when the streams were not directly influenced by storm water runoff, was good. However, storm water runoff events did result in moderate TSS and nutrient levels that when coupled with high flow volume, as is typical of Ozark rain events, are capable of delivering significant sediment loading from each subwatershed. When loading is evaluated on a per unit area basis, it becomes clear which subwatersheds have land uses that are producing the most pollutants during runoff events.

Results of the Designated Use Assessment and in comparing the similarity of the current Lee Creek Watersheds water quality to least disturbed Boston Mountain Streams indicates that no load reductions are required to meet Arkansas water quality standards. However, Oklahoma's 303(d) list has a section of Little Lee Creek listed for bacteria and sections of Lee Creek listed for bacteria and metals. Therefore, reductions in TSS loading (of approximately 10%) which will also provide reductions in nutrient, metals and bacterial loading (of approximately 10%) will be targeted in critical areas in an effort to encourage maintenance of Oklahoma's standards and to improve water quality entering Lee Creek Reservoir. Two Oklahoma agencies, the Oklahoma Water Resource Board and the Oklahoma Conservation Commission, are stakeholders with FSU in this project.

1.0 Introduction

Since the late 1980s the Environmental Protection Agency (EPA) has encouraged states and territories to manage their waters using a watershed approach. The watershed approach provides a framework to assess and manage water quality and water resources on a drainage basin (watershed) basis, focusing attention not just on point source discharges and stream disturbances in the stream corridors, but also on the effects of anthropogenic land uses (non-point sources) in the entire watershed on the waters in that watershed. In 2005 EPA released a guidance handbook for developing watershed based management plans (EPA, 2005). This watershed management plan (WMP) has been developed based largely on the 2005 EPA guidance and addresses the nine minimum elements required by EPA in plans written for the 319 Non-Point Source Control Program (Table 1). Preparation of this plan was funded by an EPA 319 Grant through the Arkansas Natural Resources Commission. Over the past two years additional data has been collected by the Fort Smith Utility (FSU) and new data has been collected during this Phase 2 project to fill in gaps identified in the draft plan creating a final WMP.

EPA Nine Minimum Elements	Location Element Addressed in Watershed Management Plan
Element 1- Identification of causes of impairment and pollutant sources	Section 3.7, 4.0, 5.0
Element 2- Estimate of load reductions expected from management measures	Sections 5.0, 6.0
Element 3- Non-point source measures required to achieve load reductions	Section 6.0
Element 4- Estimate of funding needed and sources of funding to implement plan	Section 9.0
Element 5- Information and education component	Section 8.0
Element 6- Schedule for implementation	Section 6.0
Element 7- Interim measurable milestones	Section 6.0
Element 8- Criteria to measure success of reduction goals	Section 7.0
Element 9- Monitoring component to evaluate effectiveness of implementation measures	Sections 3.1.1, 3.2, 7.0

Table 1. EPA Nine Minimum Elements.

The Fort Smith Utility (FSU) is a regional water supplier that produces, delivers and sells potable water to 13 contract users who ultimately provide drinking water, from Lee Creek Reservoir and Lake Fort Smith, to approximately 200,000 people in Western Arkansas and Eastern Oklahoma. The utility strives to provide the best quality water to its users at a reasonable cost. Protection of the watersheds that supply this water not only will reduce pollutant transport to the Arkansas River Basin but will also allow the City to continue providing its users with affordable clean drinking water. This plan complies with the AWWA G300 Standard for source water protection. It includes the bulk of the components recommended by the G300 Standard including; characterization of source water and source water protection area, source water protection goals, an action plan, implementation strategies and a plan for evaluation and revision (Table 2).

AWWA G300 Standard Component	Location Component Addressed in Watershed Management Plan
Sec.4.2 -Characterization of Source Water and Source Water Protection Area	Sections 2.0, 3.1, 3.2, 3.3, 3.4, 3.6, 3.7, 4.0, 5.0, 7.0
Sec. 4.3-Source Water Protection Goals	Sections 4.0, 6.0, 8.0
Sec.4.4-Action Plan	Sections 4.0, 6.0, 8.0, 9.0
Sec.4.5-Program Implementation	Sections 6.0, 7.0, 8.0
Sec.4.6-Evaluation and Revision	Section 7.0, 8.0

Table 2. AWWA G300 Standard.

Total suspended solid (TSS) levels appear to be a principal concern in the watershed at this time and are known to be elevated due to storm water runoff from the numerous unpaved roads in the watershed, and from stream bank erosion. A substantial portion of the watershed is agricultural. Some areas, especially adjacent to agricultural land, lack riparian buffers and have ongoing erosion issues that could export nutrients to the waters. Lee Creek is in the nutrient surplus area, designated by the Arkansas legislature. Nutrient levels have not yet been found to be alarmingly high. However, concerns over increased agricultural activity in the watershed potentially threaten Lee Creek in the years to come if not protected.

Fort Smith has maintained an ongoing watershed monitoring program since 2003. FSU staff conducts extensive water quality sampling and physicochemical analysis on a quarterly basis, under various flow regimes, at multiple creek stations in the watershed. Staff completes annual

bioassessments of the fish and macroinvertebrate community in key stream reaches (generally near water quality monitoring sites) in the watershed. In addition, the monitoring program includes weekly lake water quality profiles to assess lake trophic status and raw water intake water quality.

This WMP has been developed based primarily on evaluation/analysis of existing watershed monitoring data collected by the FSU over the past several years, then integrated with the existing water resource management documents and new data collected during Phase 1 and Phase 2 of this project to form a comprehensive WMP. The WMP includes identification of critical sub-watersheds at a small scale (~12 digit HUC) and ranked implementation measures to reduce non-point source pollution loading from critical areas. This WMP will be used to direct watershed protection activities and watershed restoration activities with the ultimate goal being immediate reduction of pollutant loading and protection of the watershed and associated reservoir source water into the future.

2.0 Watershed Description

The Lee Creek watershed (HUC-11110104 (NRCS WBD)) is approximately 447 mi² in size (Figure 1). The watershed is located in the Boston Mountains and Arkansas River Valley Ecoregions (Omernick, 1987), primarily in Crawford and Washington Counties in Arkansas and Adair and Sequoyah counties in Oklahoma. The watershed drains directly into the Arkansas River Basin. Lee Creek has an impoundment (Lee Creek Reservoir) just upstream of its confluence with the Arkansas River that serve as a drinking water source for Fort Smith and Van Buren. The area served by the reservoir has a population of approximately 200,000 (US Census, 2000).

Land use in the watershed is mostly forest and pasture. The watershed is dominated by forest land-uses (79%). Agricultural land-uses (mostly pasture) comprise a fairly high percentage (13%) of the watershed (Figure 1.) The soils in the watershed are dominated by Nella-Enders, Enders, Hector-Linker and Hector-Linker-Enders complexes. Slopes are moderately steep and typically range from 3% - 45%, with over half the slopes in excess of 16% (Figure 2.) The moderately steep slopes in the watershed make it somewhat vulnerable to erosion in unforested areas.

All waters in the state of Arkansas have Designated Uses applied to them that dictate the level of water quality that must be maintained. Lee Creek is designated for the following uses by the Arkansas Department of Environmental Quality (ADEQ):

- Primary contact recreation
- Secondary contact recreation
- Domestic, industrial and agricultural water supply
- Fisheries (Aquatic life), Perennial Boston Mountains
- Extraordinary Resource Water (ERW), from state line upstream to headwaters

Lee Creek in Arkansas is also designated as a nutrient surplus area according to the Arkansas Code 15-20-1104. This designation places controls on the amount of fertilizer that can be applied to the land in the watershed, further protecting the waters from nutrient pollution. A unique characteristic of Lee Creek, is that it runs out of Arkansas into Oklahoma and then after approximately 16 miles runs back into Arkansas. Since a portion of the Lee Creek watershed is in Oklahoma, Lee Creek must also maintain Oklahoma's designated (or beneficial) uses which are:

- Irrigation/Agricultural
- Industrial/Municipal process and cooling water
- Aesthetics
- Cool Water Aquatic community
- Primary Body Contact
- Public/Private Water Supply

Lee Creek also has a several special "Limitations" placed on it in Oklahoma's water quality standards that provides further protection:

- High Quality Water (Lee Creek downstream of 420 ft elevation)
- Outstanding Resource Water
- Scenic River (Lee Creek upstream of 420ft elevation and Little lee Creek)

The scenic river "limitation" puts Lee Creek under a special phosphorus water quality standard of 0.037 mg/L as total phosphorus. This standard also applies to the Illinois River which borders Lee Creek to the north.

Figure 1. Land-uses in the Lee Creek Watershed.

Figure 2. Land Surface Slope in the Lee Creek Watershed.

3.0 Watershed Assessment

A comprehensive assessment was completed on the Lee Creek watershed to evaluate its physical, chemical, ecological and hydrologic condition. Each of the eight sub-watersheds depicted on the map (Figures 1 and 2) were evaluated. The most southern sub-watershed (unlabeled) was not assessed as it is remote and its stream system configuration did not terminate into one main channel draining most of the area (would have to sample several small drainages) making assessment difficult. Historical data collected by FSU's ongoing monitoring program, GIS data and new data collected in the field during Phase 1 and Phase 2 of this project, by GBM^c & Associates, was utilized for the assessment. A description of each assessment component is contained in the following sections. A list of the eight sub-watersheds (defined at approximately a 12-digit HUC level) is provided below.

- 1. Jenkins Creek (JC-1)
- 2. Upper Little Lee Creek (LLC-1)
- 3. Lower Little Creek (LLC-2)
- 4. Upper Lee Creek (LC-1)
- 5. Lower Lee Creek (LC-2)
- 6. Mountain Fork Creek (MFC-1)
- 7. Webber Creek (WC-1)
- 8. Cove Creek (CC-1)

3.1 Water Quality

3.1.1 Fort Smith Utility Ongoing Monitoring Program

The FSU has been managing the Lee Creek watershed for over 10 years. They have an ongoing monitoring program that includes baseline and storm flow monitoring of water quality at eight locations in the watershed above Lee Creek Reservoir. Samples have been collected at each of these stations (Figure 3) on several occasions since 2002. Data from the monitoring program (collected primarily between 2006-2013) has been analyzed and summarized in Table 3. All historical data used in this WMP is provided in Appendix A.

Figure 3. FSU Sample Locations in Lee Creek Watershed.

Parameters												
	TSS	(mg/L)	T.Phos	s (mg/L)) Orthophos. NO (mg/L)		NO3+NO2-N TOC (mg/L) (mg/L)		mg/L)	Chloride (mg/L)		
Station	mean	range	mean	range	mean	range	mean	range	mean	range	mean	range
				Ba	seline S	ample Re	sults					
Blackburn	5.0	<5.0	0.030	<0.020 -	0.035	<0.010 -	0.20	0.04 -	1.30	0.50 -	4.43	1.95 -
				0.060		0.064		0.65		3.03		12.16
Buckhorn	5.2	<5.0 -	0.054	<0.020 -	0.044	<0.010 -	0.13	0.01 -	1.38	0.26 -	1.49	0.93 -
		10.0		0.460		0.123		0.47		2.44		2.08
		<5.0		<0.020		<0.010		0.02		0.30		1.57
Cove	5.0	- 5.0	0.037	- 0.170	0.045	- 0.153	0.25	- 0.86	3.17	- 11.44	2.73	- 4.45
		<5.0		<0.020		<0.010		0.01		0.39		2.19
Jenkins	5.1	-	0.030	-	0.040	-	0.16	-	2.77	-	3.37	-
		9.0		0.120		0.092		0.36		6.61		6.50
Little Lee	E /	<5.0	0.051	<0.020	0.047	<0.010	0.17	0.01	2 20	0.33	2 02	2.02
Little Lee	0.4	10.0	0.051	- 0.210	0.047	- 0 162	0.17	- 0 79	2.20	- 6 91	3.92	- 10.08
		<5.0		<0.020		<0.010		0.03		0.40		1.60
Mtn. Fork	5.3	-	0.038	-	0.038	-	0.17	-	2.22	-	3.67	-
		10.0		0.110		0.061		0.97		5.70		12.75
Upper		<5.0		<0.020		<0.010		0.01		0.76		1.65
Lee	5.5	-	0.050	-	0.042	-	0.27	-	1.80	-	5.28	-
		11.43		0.350		0.123		0.99		3.01		36.76
Weber	5.0	-5.0	0.040	<0.020	0.022	<0.010	0.25	0.02	1 76	0.77	1 1 2	2.60
vvebei	5.0	5.0 <5.0	0.040	0.100	0.035	0.065	0.55	-	1.70	3.30	4.15	- 6.87
	I	I		Sto	rm Flow	Sample F	Results			0.00		0.01
Blackburn												
		5.5		0.038		<0.010		0.02		1.48		1.06
Buckhorn	24.0	-	0.116	-	0.058	-	0.13	-	3.46	-	1.37	-
		71.3		0.230		0.214		0.43		5.77		1.83
Cove	95 1	9.5	0.201	0.026	0 1 2 1	<0.010	0.10	0.03	1 1 1	0.40	2 50	1.55
Cove	85.1	- 311.8	0.201	- 1.180	0.121	0.974	0.19	- 0.46	4.14	- 11.38	2.59	- 4.41
		19.0		0.090		0.020		0.15		5.88		1.30
Jenkins	26.0	-	0.110	-	0.071	-	0.25	-	6.36	-	1.95	-
		33.0		0.130		0.154		0.34		6.85		2.60
		<5.0		0.078		<0.010		0.02		0.55		1.50
Little Lee	79.0	-	0.196	-	0.041	-	0.10	-	2.76	-	5.27	-
		225.25		0.318		0.093		0.23		5.03		24.17
Mtn Fork	54 7	< 5.0	0 171	<0.020	0.053	0.040	0.00	0.04	3 20	2.01	5 35	1.49
	01.7	111.0	0.171	0.303		0.095	0.00	0.14	0.00	4.49	0.00	21.67
Linner		7.8		0.021		0.040		0.02		1.95		1.44
Upper	79.3	-	0.217	-	0.060	-	0.12	-	3.22	-	2.57	-
LEE		284.5		0.558		0.153		0.24		4.28		4.83
Weber												

Table 3. Summary of Historical Monitoring Data Collected by FSU.

FSU uses Buckhorn Creek as the reference condition (least disturbed) for the watershed. This sub-watershed is relatively undeveloped, over 80% of it is forest (See Section 3.7). Water quality in Buckhorn Creek is very good; sample results reflect the lowest levels of TSS observed during storm flow sampling events. Total phosphorus during storm events was also low compared to other stations (Figure 4).

Under baseflow conditions each streams water quality was generally comparable to that of Buckhorn Creek (Figures 4-6). Under storm flow conditions, phosphorus and TSS were noted to be slightly elevated in most of the other streams, with Cove Creek being the most noticeably elevated for phosphorus and Cove Creek, Mountain Fork Creek, Upper Lee Creek and Little Lee Creek all being noticeably elevated for TSS. Jenkins Creek also displayed elevated TOC values during storm events, though still less than 10 mg/L.

Figure 4. Average FSU Phosphorous Data.

FSU will continue their existing monitoring program to evaluate success of the implementation phase of the management plan.

Figure 5. FSU Average TOC Data.

3.1.2 Water Quality Data Collected Specifically for the WMP

As a component of the development of this WMP, additional water quality data was collected to supplement the routine monitoring data collected by FSU. Water samples and *in-situ* data were collected from several points along Lee Creek and its tributaries to determine the water quality during baseflow and storm flow conditions. Sample stations were selected to represent each of the eight sub-watersheds depicted in Figure 7. A total of eight stations were utilized during the study, all stations were sampled during each sampling event. Samples were collected during 2012 and 2014, on two occasions to represent baseflow conditions, and five occasions to represent storm flow conditions. A description of each sample station is provided in Table 4 These stations are close to the same locations as those used by FSU, though often times positioned lower in the watershed, to ensure all loading from the sub-watershed was accounted for. Buckhorn Creek is one of the FSU routine monitoring stations. Buckhorn was omitted from the 2012 Phase 1 study due to its small size and unlikelihood that it would be a significant source for pollutants, but was added to the Phase 2 2013/2014 study to serve as a reference.

Samples were collected according to the Quality Assurance Project Plan (QAPP) approved by the ANRC and EPA Region 6. In brief, grab samples were collected in clean, labeled containers from within the main area of flow in the channel and delivered to the laboratory for analysis following all chain of custody procedures (see QAPP for project). Samples were collected for analysis of nitrate+nitrite-N, ammonia, total phosphorus, ortho-phosphorus, BOD5¹, TOC¹, and TSS, and Chloride¹. At the time of sample collection, *in-situ* measurements were taken for pH, specific conductance, dissolved oxygen, temperature, and turbidity. *In-situ* measurements were made following GBM^c SOP's (Nos.1-4 and 14). Water quality results, including *in-situ* parameters, from each station, are provided in Appendix B.

Station Identification	Station Description
JC-1	Jenkins Creek just upstream of Denny Ridge Road in upper watershed.
LLC-1	Little Lee Creek just upstream of Denny Ridge Road crossing in upper watershed.
LLC-2	Little Lee Creek at Hwy 101 road crossing.
LC-1	Lee Creek at Creek Fork Road low water crossing.
LC-2	Lee Creek at Hwy 101 road crossing.
MFC-1	Mountain Fork Creek at Natural Dam, below road crossing.
CC-1	Cove Creek at Creek Fork Road low water crossing.
WC-1	Weber Creek at Weber Creek Road low water crossing.
BH-1	Buckhorn Creek upstream of Cove Creek confluence about 1/4 mile.

Table 4. Sample Station Descriptions.

Water quality during baseflow conditions was found to be good and fairly consistent, in each sub-watershed. Table 5 provides a summary of water quality data for the Lee Creek watershed stations for select constituents. All water quality data collected during the study is provided in Appendix B. Each station is near the outlet of it respective sub-watershed and should be typical of pollutant concentrations (and loads) in that system. Total phosphorus under baseflow conditions averaged no more than 0.035 mg/L and ortho-phosphorus (the dissolved fraction of phosphorus that is generally considered biologically available) was always below the 0.02 mg/L detection level. Nitrate+Nitrite-N levels were very low, all less than 0.60 mg/L. TSS was less than detection (5.0 mg/l) and turbidity was less than 10.0 NTU at all stations during baseflow conditions. TOC and BOD5 levels, which measure carbon based organic material in the water were all very low, BOD5 levels were all less than the 2.0 mg/L detection level and TOC averaged less than 1.50 mg/L in all samples. These data are indicative of water that is very

17

¹ BOD5 and TOC were analyzed only in samples collected during Phase 1. Chloride was analyzed during both phases, but on only two occasions during Phase 1.

clear, and free of suspended matter (Figure 8). Chloride levels were very low at all stations, less than 3.0 mg/L. Conductivity measurements were also low at all stations, less than 100 us/cm, with the exception of LLC-1 which was over 150 us/cm on both baseflow occasions. The specific conductance measurements are all representative of waters generally low in dissolved minerals and other materials.

Figure 8. Jenkins Creek at JC-1 and Lee Creek at LC-1 during Baseflow Conditions.

Water quality during storm flow conditions is summarized in Table 5. Five storm events were sampled (two during Phase 1 and three during Phase 2), with each stations samples being collected prior to the peak runoff (per the USGS gauges in the watershed). Storm events varied in size from greater than 2 inches to around 0.5 inches. The concentration of some pollutants increased as flow increased, while others pollutants decreased or remained stable. Most notably TSS (Figure 9) and total phosphorus (Figure 10) increased an order of magnitude (on average) during storm flow events. TSS levels were as high as 244 mg/L, in Little Lee Creek (LLC-2), and total phosphorus was as high as 0.40 mg/l at station LLC-1. BOD5 levels increased notably at stations LLC-1 (6.74 mg/L) and LLC-2 (3.39 mg/L) during the January 25, 2012 storm event. These were the only two stations that exhibited BOD5 levels in excess of 3.0 mg/L. TOC levels did not exhibit increases similar to BOD5. It is unlikely that these elevated BOD5 values would be problematic to long term water quality.

			<u> </u>			Paran	neters	<u></u>				
	TSS (mg/L)		T.Phos (mg/L)		Orthophos. (mg/L)		NO3+NO2-N (ma/L)		TOC (mg/L)		Chloride (mg/L)	
Station ¹	mean	range	mean	range	mean	range	mean	range	mean	range	mean	range
					Baseline	Sample R	esults					
JC-1	<5	²	<0.020		<0.02		0.41	0.32 - 0.50	1.33	0.97 - 1.70	2.0	
LLC-1	<5		0.030	<0.02 - 0.04	<0.02		0.48	0.46 - 0.50	0.99	0.21 - 1.77	2.1	
LLC-2	<5		0.030	<0.02 - 0.04	<0.02		0.40	0.29 - 0.50	1.29	1.00 - 1.58	1.8	
LC-1	<5		0.035	<0.02 - 0.05	<0.02		0.43	0.36 - 0.50	0.86	0.77 - 0.96	2.2	
LC-2	<5		0.035	<0.02 - 0.05	<0.02		0.47	0.44 - 0.50	1.12	0.92 - 1.33	1.9	
WC-1	<5		0.030	<0.02 - 0.04	<0.02		0.39	0.27 - 0.50	1.25	0.99 - 1.51	2.0	
CC-1	<5		0.035	<0.02 - 0.05	<0.02		0.36	0.22 - 0.50	1.48	1.52 - 1.54	1.3	
MFC-1	<5		0.035	<0.02 - 0.05	<0.02		0.38	0.26 - 0.50	1.12	0.98 - 1.26	1.5	
				S	torm Flow	v Sample	Results					
JC-1	42.2	<5.0 - 112.0	0.06	<0.02 - 0.13	0.03	<0.02 - 0.04	0.30	0.19 - 0.50	3.63	3.18 - 4.09	2.7	2.6 - 2.7
LLC-1	13.6	<5.0	0.10	<0.02	0.02	<0.02	0.25	0.14	3.07	2.67	3.1	2.5 - 3.4
LLC-2	63.2	<5.0 - 244.0	0.12	0.02	0.04	<0.02 - 0.12	0.21	0.12	3.14	1.86 - 4.41	2.5	2.4
LC-1	54.6	<5.0 - 143.0	0.14	<0.02 - 0.32	0.03	<0.02 - 0.06	0.27	0.10	2.02	1.21 - 2.83	4.7	3.7 - 6.4
LC-2	17.0	<5.0 - 65.0	0.05	<0.02 - 0.18	0.03	<0.02 - 0.07	0.24	0.14 - 0.50	2.20	1.46 - 2.93	3.7	2.8 - 5.4
WC-1	16.6	<5.0 - 54.0	0.05	<0.02 - 0.16	0.03	<0.02 - 0.05	0.29	0.14 - 0.50	3.48	1.37 - 5.58	4.2	2.5 - 5.6
CC-1	38.0	<5.0 - 122.0	0.13	<0.02 - 0.29	<0.02	<0.02 - <0.02	0.26	0.07 - 0.50	2.90	1.57 - 4.24	1.9	1.8 - 2.1
MFC-1	37.4	<5.0 - 163.0	0.10	<0.02 - 0.39	0.03	<0.02 - 0.09	0.21	0.12 - 0.50	3.33	1.86 - 4.81	2.3	2.0 - 2.7
BH-1	<5.0	<5.0 - <5.0	0.02	<0.02 - 0.03	<0.02	<0.02 - <0.02	0.22	0.12 - 0.38			1.4	1.4 - 1.4

Table 5. Summary of Average Baseflow and Storm Flow Water Quality.

 ¹ Each station has two baseline samples and five storm samples represented.
 ² Symbolizes either no data, all data had the same value (SD=0) or only one value represented, as in the case of chloride.

Figure 9. Average TSS, Baseflow versus Storm Flow.

Figure 10. Average Total Phosphorus, Baseflow versus Storm Flow.

In general, water quality during baseline flow events, when the streams were not directly influenced by storm water runoff, was good. However, storm water runoff events did produce moderate pollutant levels (Figures 11 and 12), that when coupled with high flow volume typical of the Ozark region rain event, are capable of producing significant pollutant loading from each sub-watershed (see Section 4.0).

Figure 11. MFC-1 during Storm Event.

Figure 12. LLC-2 during Storm Event.

Designated Use Assessment Criteria

Currently none of the streams in the Lee Creek Watershed in Arkansas are on Arkansas 303(d) list. In order to evaluate the maintenance of Lee Creeks designated uses based on water quality data, the Arkansas Assessment Criteria for the Boston Mountains Ecoregion was utilized. Table 6 provides a summary of the assessment criteria that are pertinent to this WMP study's focus.

Parameter	Standard	Lee Creek Assessment	Use assessed
Temperature (°C) Maximum	29	All <29	Aquatic life (fisheries)
Dissolved Oxygen (mg/L) Minimum, watersheds >10mi ²	6	All >6.0	Aquatic life (fisheries)
pH (s.u.)	6 – 9	All in range	All
Turbidity (primary flow) ntu	10	All <10	All
Turbidity (storm flow) ntu	19	Some exceedances (see text)	All
Chloride (mg/L)	250/23 ¹	All <23	Drinking water
Nitrate (mg/L)	10	All <1.0	Drinking water
Ammonia (mg/L) (4-d avg/30-d avg)	5.3/2.1	All <0.10	Aquatic life (fisheries)

Table 6. Boston Mountain Assessment Criteria Standard.

¹Chloride is assessed with a general 250 mg/l for drinking water and an ecoregion based value 33% greater than the ecoregion reference value, which in this case is 23 mg/L.

Data collected during the study were compared to the Arkansas assessment criteria. All designated uses are being maintained in each sub-watershed. However, storm flow turbidity was exceeded at some sub-watershed monitoring stations on at least one occasion. According to the assessment criteria for turbidity, if more than 20% of samples collected (with at least 24 samples) exceeds the storm flow value, the stream is listed as impaired for turbidity. Based on the new data collected and the historical data collected by FSU, it does not appear that any of the sub-watersheds are at risk for impairment due to turbidity.

As discussed in Section 2.0, a portion of the Lee Creek watershed is in Oklahoma. Therefore, that portion of Lee Creek and its tributaries located within Oklahoma are required to maintain Oklahoma's designated uses. The water quality stations that represent these reaches are JC-1, LLC-1, LLC-2, LC-2 and WC-1. Oklahoma's Use Assessment Protocols are very similar to Arkansas'. The only criteria that are more stringent in Oklahoma than in Arkansas are: dissolved oxygen (7.0 mg/L) and temperature (22°C) in the spring (Mar 1 – May 31) period, pH (min 6.5 s.u.) and total phosphorus (0.037 mg/L as a 30-day geomean). The 0.037 mg/L total phosphorus criteria applies only in Oklahoma's Scenic Rivers which Little Lee Creek and Lee Creek are designated.

Spring dissolved oxygen levels measured during the study were greater than 7.0 mg/L, temperatures measured were all less than 22°C and pH were all greater than 6.5 s.u. The total phosphorus geometric means for baseflow samples at all stations were less than 0.037 mg/L. However, storm flow means were all in excess of the 0.037 mg/L criteria. In addition to the recent data collected during this study, FSU has collected total phosphorus data over the past several years at LLC-2 (identified as "Little Lee" in Table 3 of this report). The geometric mean of the baseflow data at LLC-2 collected by FSU is 0.037 mg/L. Storm flow data collected at LLC-2 are all above the 0.037 mg/L criteria. Based on the limited data reviewed, it appears that there is a reasonable likelihood that total phosphorus in the Lee Creek watershed in Oklahoma could be in excess of the Oklahoma criteria for Scenic Rivers. Little Lee Creek is on Oklahoma's 303(d) list for unattainment of the primary body contact use. The cause of the impairment is listed as bacteria. Lee Creek is on the Oklahoma 303(d) list for unattainment of the cool water aquatic community use and the primary body contact use. Causes are noted as copper, lead, and bacteria, respectively.

3.2 Lee Creek Reservoir

Water Quality

Water samples were collected by Fort Smith Utility from seven sampling locations situated throughout Lee Creek Reservoir to characterize the water quality of the reservoir as part of the Fort Smith Utility monitoring program. Monitoring data reviewed for this analysis were from samples collected once a week beginning in January 2009 and ending in February 2014. For this analysis, we focused on only two sampling locations, one shallow sampling location (L1) which is in the middle of the reservoir and a deeper sampling location (L2) which is located just above the dam. We only considered data from the summer months (July-August) and winter months (January and February) from the two sampling locations to best depict contrasting conditions in Lee Creek Reservoir.

Grab samples were collected by Fort Smith Utility in clean, labeled containers at approximately 1.5 (or one and one-half) feet deep within the water column of the reservoir. Samples were stored in ice filled coolers and delivered to the laboratory for analysis following all chain of custody procedures. Samples were collected routinely for analysis of total phosphorus (TP), and total dissolved solids (TDS). Samples were also collected at station L2 from one quarter the photic zone (or one half the secchi depth) for the analysis of chlorophyll- α (Chl- α). Chlorophyll- α samples were maintained in the dark, filtered within 24 hours of collection and frozen prior to laboratory analysis to prolong the holding time. While collecting samples for analysis, *in-situ* measurements pH, dissolved oxygen, specific conductivity, temperature, and turbidity were taken at one meter increments from the water's surface to the bottom of the reservoir. We considered only the data collected from within the top one meter at the two sampling locations. Table 7 summarizes the averages of these data at the two sampling locations within the reservoir in the summer and winter months.

Site	Season	Temperature (°C)	Dissolved oxygen (mg/L)	рН	Specific Conductivity (µs/cm)	Total dissolved solids (g/L)	Turbidity (NTU)	Total Phosphorus (mg/L)	Chlorophyll-α (µg/L)
		29.53	6.13	7.78	106.02	0.06	7.15	0.08	
L1	Summer	±	±	±	±	±	±	±	-
		2.08	1.02	0.50	14.23	0.02	2.98	0.06	
	Winter	5.80	11.95	7.69	80.12	0.05	14.60	0.06	
L1		±	±	±	±	±	±	±	-
		2.32	0.89	0.57	8.51	0.01	10.70	0.05	
		29.46	6.18	7.72	105.46	0.06	5.08	0.06	12.58
L2	Summer	±	±	±	±	±	±	±	±
		2.06	1.09	0.61	13.67	0.02	105 14.60 0.06 \pm \pm \pm 0.01 10.70 0.05 0.06 5.08 0.06 \pm \pm \pm 0.02 1.85 0.04 0.10 15.00 0.10	4.77	
L2	Winter	5.80	11.90	7.70	80.00	0.10	15.00	0.10	34.20
		±	±	±	±	±	±	±	±
		2.31	0.87	0.43	8.88	0.01	10.72	0.04	9.01

Table 7. Averages of Summary Data (1± stdev) from Lee Creek Reservoir.

Lee Creek Reservoir is classified as a type B lake in Arkansas according to Arkansas Department of Environmental Quality (ADEQ). The ADEQ considers small lakes in mountainous terrain to be type B. A comparison was made between Lee Creek Reservoir water quality and that of Arkansas type B lakes. ADEQ collected most of their lake samples between July 12, 1999 to August 26, 1999; therefore we will only compare Lee Creek Reservoir in the summer months with other type B lakes in Northwest Arkansas. Compared to other type B lakes in Arkansas, Lee Creek Reservoir's water temperature on average (29.5 °C), is slightly lower than the average, 29.7°C, found in other type B lakes in Northwest Arkansas (Figure 13). Turbidity in Lee Creek Reservoir, 6.11 NTU, is higher than the average, 4.30 NTU, found in type B lakes in Northwest Arkansas (Figure 13). Average chlorophyll-α in Lee Creek Reservoir, 12.58 μ g/L, is higher than the average, chlorophyll- α (7.60 mg/L) found in other type B lakes in Northwest Arkansas (Figure 13). Average total phosphorus in Lee Creek Reservoir, 0.07 mg/L, is higher than the average, 0.04 mg/L, found in other type B lakes in Northwest Arkansas (Figure 13). Turbidity, chlorophyll- α , total phosphorus were higher, and temperature was lower on average in Lee Creek Reservoir than other type B lakes in the Northwest Arkansas in the summer months. Elevated turbidity and chlorophyll- α levels are likely due to the shallow nature of the reservoir which allows sunlight to take its full affect on water temperature and algal growth.

Figure 13. Comparison of Lee Creek Reservoir and other Type B Lakes in Northwest Arkansas.

Trophic Status

Lakes and reservoirs are often classified according to their trophic state index. A lake's trophic status (or trophic state index) is a measurement of how productive a lake's biota are, particularly in regard to its primary producers such as algae and aquatic plants that are found on the bottom end of the food chain. The index is based on changes in nutrient levels, which cause changes in algal biomass, in turn changing the clarity of the water. Dr. Robert Carlson developed a trophic state index for classifying lakes based on nutrient concentrations and productivity (Table 8) (Carlson, 1977). Oligotrophic lakes contain very low concentrations of nutrients that are required for plant growth; therefore oligotrophic lakes have low productivity. Newly built lakes are often classified oligotrophic as their nutrient concentrations have not yet been influenced by land use practices such as agriculture or urbanization. Oligotrophic lakes are clear watered lakes that are well-oxygenated and characterized by having low productivity. An oligotrophic lake may also be a high quality drinking water source. Mesotrophic lakes have an intermediate level of productivity, have enough nutrients within them to support submerged aquatic plants beds, and usually have clear water. Eutrophic lakes have a high productivity level that can support an abundant amount of aquatic plants and algae. If aquatic plants dominate the lake, the water tends to be clear, and if algae dominates the lake, the water tends to be more turbid. Hypereutrophic lakes are very nutrient-rich lakes; algal blooms occur often and can cause low water clarity within the lake. Hyperteurophic lakes support the most aquatic plants, fish, and other biota compared to other types of lakes in the classification system. However, these excess nutrient and plant/algae biomass may reduce oxygen levels periodically and prevent life

from occurring at lower levels in the lake. Table 9 shows the Carlson trophic state index for Lee Creek Reservoir using chlorophyll- α , secchi depth, and total phosphorus.

Table 8. Carlson's Trophic State Index.

Trophic State	Oligotrophic	Mesotrophic	Eutrophic	Hypereutrophic
Range	<40	40-50	50-70	>70

We calculated trophic state index for Lee Creek Reservoir at two different sampling locations in the reservoir, during the summer (July-August) and winter (January-February) months. Lee Creek Reservoir sampling location L1 averaged, 61.78 during the summer months, which classifies the reservoir as eutrophic (Table 9 and Figure 14). At sampling location L2, the average trophic state index was 57.81 during the summer months and classifies the reservoir as eutrophic (Table 9 and Figure 14). L1 in the winter months averaged 59.06 which again classifies the reservoir as eutrophic. Data from L2 in the winter months had an average trophic state index of 51.00, classifying this location as the lower end of eutrophic (Table 9 and Figure 14). The trophic state index scored higher for total phosphorus and secchi depth but lower for chlorophyll- α (Table 9). Lee Creek Reservoir, overall, can be classified as eutrophic based on trophic state index values from the two sampling locations, L1 and L2, in both the summer and winter months. Considering the high quality of the source water into Lee Creek reservoir it is a concern that the lake is eutrophic.

Table 9. Summary of Carlson's Trophic Index Scores for L1 and L2 in the Summer and Winter Months in Lee Creek Reservoir.

Site	Season	TSI (SD) TSI (TP)		TSI (Chl-a)
		58.55	59.57	
L1	Winter	30.91-77.12	47.35 - 79.04	
		Eutrophic	Eutrophic	
		59.59	63.96	
L1	Summer	53.93 - 67.13	47.35 - 90.91	
		Eutrophic	Eutrophic	
		57.98	60.72	54.73
L2	Summer	52.56 –67.13	47.35 – 80.56	46.21-60.80
		Eutrophic	Eutrophic	Eutrophic
	Winter	59.10	59.70	34.20
L2		32.30 - 77.10 47.40 - 83.20		0 - 47.80
		Eutrophic	Eutrophic	Oligotrophic

3.3 Unified Stream Assessment

A variation of the Unified Stream Assessment (USA) protocol (Kitchel and Schueler, 2004) was completed on Lee Creek in 2012 and in each sub-watershed in 2014. This visual based field assessment protocol consists of breaking the stream into manageable reaches and evaluating, on foot or by canoe, each reach in its entirety. The evaluation is a screening level tool intended to provide a quick characterization of stream corridor attributes that can be used in determining the most significant problems in each stream reach from a physical, ecological, chemical and hydrologic perspective. General categories of stream corridor characteristics assessed are:

- 1. Hydrology
- 2. Channel morphology
- 3. Substrate
- 4. Aquatic habitats
- 5. Land use
- 6. Riparian buffer
- 7. Water/sediment observations
- 8. Stream impacts (non-point source related including bank erosion)
- 9. Floodplain dynamics
- 10. Geomorphic attributes
- 11. Restoration/retrofit opportunities

Field data forms completed during the survey are included in Appendix C. A summary of the pertinent findings are provided in Table 10. Figures depicting impacts in the reaches assessed are provided in Appendix C. The upstream starting point of the Lee Creek assessment was at the canoe access area off Hwy 220 then downstream to the HWY 101 crossing. During 2014 a section of each major creek in each sub-watershed was assessed. In the larger sub-watersheds USA's were completed in 2 reaches and in the smaller sub-watershed a minimum of one reach was assessed. The impacts observed and their frequency of occurrence is assumed to be consistent with other comparable stream reaches in the sub-watershed. That is, stream reaches not assessed that have similar channel size to the assessed reach is anticipated to have similar characteristics and issues at a similar frequency to those of the reaches assessed. Figures 15 provides a color aerial photograph depicting the location of some of the impacts identified in reach LC-1.

Stream bank erosion, stream crossings, impacted buffers, and storm water outfalls were noted at several areas in the Lee Creek Watershed. Stream bank erosion was noted most frequently

and varied in severity from moderate to excessive. Bank erosion was often times associated with pasture land uses where the riparian vegetation had also been disturbed or removed. Impacted riparian buffers (the vegetated area directly adjacent to the stream bank) were not always noted during this USA. However, riparian buffers devoid of vegetation were identified using aerial photography and were prominent in some stream reaches, particularly in Reach LC-2, WC-1, MFC-1 and CC-1. Often these impacted buffer areas are dominated by hay grasses that extended to the stream bank edge and the absence of well developed vegetated buffers (both trees and under story vegetation) along the stream (Figure 16). Riparian buffers provide streams with shading that helps cool the water and limit periphyton growth, they provide organic matter inputs which serve as food and habitat for aquatic biota, and they provide stabilization to stream banks that prevents erosion. Well developed riparian buffers can also filter storm water pollutants and allow for increased rainwater infiltration which aids in protecting the streams hydrology (through decreased peak flows and increased baseflow).

USA Stream Reach		Significant Problem/Issue		Percent of Stream Length Affected/# instances		
LC-1 – from canoe access off HWY 220 to HWY 59 at Natural Dam	1.	Stream bank erosion	1.	22%		
LC-2 – from HWY 59 to HWY 101 Bridge	1. 2. 3.	Stream bank erosion Storm water outfalls Channel alteration	1. 2. 3.	23% 8 Outfalls Overall reach		
LLC-1	1. 2.	Stream bank erosion Stream Crossings	1. 2.	14% 2 crossings		
LLC-2	1. 2.	Stream bank erosion Utility crossing	1. 2.	39% (2 in each reach)		
WC-1	1.	Stream bank erosion	1.	19%		
JC-1	1.	Stream bank erosion	1.	37%		
MFC-1	1. 2.	Stream bank erosion Impacted buffers	1. 2.	28% 6 areas		
CC-1	1. 2.	Stream bank erosion Impacted buffers	1. 2.	12% 4 areas		

Table 10. Summary of Pertinent Findings from the USA.

Figure 16. Comparison of an Impacted Riparian Buffer (little to none) to a well developed Riparian Buffer.

Bank erosion was noted in several areas, particularly in LC-2, LLC-2, JC-1 and MFC-1. Each instance of bank erosion perceived as moderate risk or greater was tagged with a GPS coordinate and the length of the affected bank measured or estimated. The severity of bank erosion was then characterized using a bank erosion hazard index (BEHI) developed by Dave Rosgen (Rosgen, 2006). The BEHI uses several characteristics of the eroded bank (height, vegetated protection, bank angle, soil composition, etc) to calculate an overall score that relates to level of erosion hazard. The possible levels are low, moderate, high, very high, and extremely high. Bank erosion observed in the Lee Creek watershed ranged from moderate active erosion and erosion hazard to extremely high (excessive) active erosion and erosion hazard. Some of the high to extremely high erosion hazard (Figure 17) was in areas where the riparian buffers had been removed and the banks were greater than seven feet high. Moderate to high stream slopes, and the gravel/cobble content of the bank soils in the Lee Creek watershed make the banks susceptible to erosion when not protected by good riparian areas. Stream bank erosion can add hundreds of tons of sediment (and nutrients) to a stream system annually. Five of the eight sub-watersheds in Lee Creek had greater than 20% of their major stream length experiencing active erosion at a moderate level or greater.

The other issues identified most frequently during the USA were storm water outfalls and stream crossings. Storm water outfalls mostly included culverts entering the creek from road side ditches or obvious drainage pathways exiting pastures (Figure 18) directly into the creek. Both types of outfalls allow for direct transport of sediment and nutrients into the stream system. Stream crossings were typically ATV/Jeep trails and can also serve as a conduit for storm water
much like a storm water outfall. Stream crossings also can be sites of active channel erosion due to the crossing of motorized vehicles that impact the stream banks and channel substrates.

Figure 17. Stream Banks with Very High Bank Erosion Hazard in Lower Lee Creek.

Figure 18. Typical Storm Water Outfall from Pasture in Lee Creek.

3.4 Geomorphology and Channel Stability

Fluvial geomorphology refers to the interrelationship between the land surface (topography, geology and land-use) and stream channel shape (morphology). When the force of running water is exerted on the land surface it can have significant effects on the morphology of stream channels. A stable stream, or one said to be in "equilibrium", is one where water flows do not significantly alter the channel morphology over short periods of time. The most important flow level in defining the shape of a stream is its bankfull flow (or effective discharge). Bankfull discharge is the stage at which water first begins to enter the active flood plain. A detailed geomorphic assessment of the entire Lee Creek Watershed was beyond the scope of this project. However, several geomorphic attributes were estimated during the USA, and are helpful in assessing channel stability (Rosgen, 1996). Table 11 provides a summary of the channel dimensions estimated (and some measured) during the USA as well as key stability issues noted.

Parameter (approximate/estimated)	Station Identification									
· · · · · · · · · · · · · · · · · · ·	LC-1	LC-1.5 ¹	LC-2	LLC-1	LLC-2	WC-1	JC-1	MFC-1	CC-1	
Watershed size (mi ²)	97.2	191.0	216.0	36.2	119.0	37.9	14.9	39.6	53.7	
Bankfull depth (ft)	2.8	3.5	4.0	1.4	4.0	1.8	1.4	2.0	2.4	
Bankfull width (ft)	128	110	195	75	150	80	57	68	58	
Substrate size class	Cobble	Cobble	Cobble	Cobble	Cobble/ Gravel	Cobble/ Gravel	Cobble	Cobble/ bedrock	Cobble	
Width: Depth ratio	46	31	49	54	38	44	41	34	24	
Overall stream bank erosion hazard	Moderate	Moderate	Moderate- High	Moderate	High	Moderate	High	Moderate- High	Minor- Moderate	
Channel stability issues	Minor bank scour and failure	Minor bank scour and failure	Minor bank scour and failure, sediment deposition	Widening	Widening Scour	Widening	Widening Headcut Scour	Widening Headcut Scour Bank Failure	Minor Widening	

Table 11. Summary of Geomorphic Characteristics.

¹Station LC-1.5 is not a sub-watershed or sample station utilized in the majority of this report. It is typically combined into LC-2.

Lee Creek's main channel was found to have a moderate level of bank erosion overall. The lower reach (LC-2) displayed more pronounced bank erosion than the upper reaches. The channel displayed some minor signs of channel widening, bank scour, bank failure, and sediment deposition but no major problems with degradation (channel deepening) or aggradation (channel filling, shallowing) were noted.

3.5 Ecological Condition

Monitoring of aquatic communities is a vital component to understanding potential perturbations to water and habitat quality. The condition of aquatic communities (abundances, diversity, richness, sensitivity, and biological index, etc.) provides important insight regarding water body health and is useful when assessing the aquatic life (fisheries) status of a water body. Macroinvertebrate communities have been sampled by FSU personnel since 2003 at multiple locations in the Lee Creek watershed as part of their routine watershed monitoring program. Collection and analysis methods generally followed EPA's Rapid Bioassessment (RBA) protocols (Barbour et al. 1999). Samples are collected using surber samplers and three subsamples are collected at each sample station, composited in the laboratory, and analyzed to determine community metrics. Fish communities were sampled in the Lee Creek watershed from 2002 to 2013 using electroshocking methodology based on EPA's RBA protocols (Barbour et al. 1999). Fish samples were analyzed to determine community metrics typically associated with fish bioassessment and to calculate an index of biotic integrity (Plafkin, 1989). Data from the more recent collections of both macroinvertebrates and fish will be the focus of this evaluation.

3.5.1 Macroinvertebrate Community

Benthic macroinvertebrates inhabit the sediment or live on the bottom substrates of streams, rivers and lakes. The presence of these organisms and their diversity and tolerance to environmental perturbation at an expected level reflects the maintenance of a systems biological integrity. Monitoring these assemblages is useful in assessing the aquatic life status of the water body and detecting trends in ecological condition.

Several macroinvertebrate metrics are calculated for the collections completed by FSU. These metrics include: taxa richness and Ephemeroptera, Plecoptera, Trichoptera (EPT) richness, average tolerance, and percent clingers. Several of the metrics calculated are used to

determine a stream condition index (SCI) originally developed by the National Park Service (NPS) for National Scenic Riverways (Bowles, 2007).

Taxa richness and EPT richness of Lee Creek stations have shown a general trend for increasing from 2003 to 2011. Taxa richness has increased from 17-24 species in 2003 to 24-40 species in 2013. In 2003, EPT richness ranged from 5-13 species, increasing to an EPT richness of 12-16 species in 2013 (Table 12). All of the taxa and EPT richness values score above the quartile of the NPS SCI data. Higher taxa richness indicates good water quality and sufficient habitat diversity. High numbers of EPT taxa are sensitive to pollutants, therefore, high richness of these taxa indicate higher water quality. Rather than using the NPS SCI for routine monitoring, FSU developed their own SCI using the same methodology that the NPS used. The FSU SCI uses four metrics (taxa richness, EPT richness, tolerance and percent clingers) are each scored independently as either a 5, 3, or 1 depending it's comparison to the reference condition (Table 13). A total score (sum of all four metric scores) between 16 and 20 indicates a community that is unimpaired and is fully maintaining all designated uses. The SCI scores calculated for Lee Creek stations ranged from 12 to 20. The majority of years and streams were in the unimpaired range, 16-20. The year 2012 scored low when compared to other years but the communities seemed to have recovered in 2013. The scores in 2013 ranged from 14-20, with only one stream, Buckhorn Creek, scoring 14, all other streams are considered unimpaired and maintain designated uses. Buckhorn Creek is a water quality reference station in the Lee Creek Watershed. However, it is a first order stream and is also a very small watershed that dries up each year and does not have as developed habitat as does the larger streams. Climatic conditions could have had a large impact on the biotic communities in 2012. In May and June of 2011, very high flood events occurred. Following what is assumed to be a 100 year storm event which resulted in a large scour to the biota was an extreme drought period. These climatic conditions could have been detrimental to the macroinvertebrate communities, explaining the low SCI scores for 2012. However, in 2013 the communities seem to be recovering and future sampling periods will hopefully show a return to the conditions prior to 2012 (Table 13).

					Mountain	
	Upper Lee	Buckhorn	Cove	Jenkins	Fork	Little Lee
Date			Taxa R	ichness		
3/7/2003	17	16	24	24	17	23
2/20/2004	19	25	21	22	28	21
3/2/2005	23	23	29	28	30	22
3/9/2007*	37	32	39	44	48	48
3/20/2010*	30	35	53	42		
3/3/2011*	32	36	58	36	61	
3/6/2012*	38	21	46	42	33	
3/21/2013*	30	24	40	28	29	
			EPT Richness			
3/7/2003	7	5	13	10	11	11
2/20/2004	10	14	11	12	14	14
3/2/2005	15	14	18	18	18	13
3/9/2007*	19	16	20	20	22	25
3/20/2010*	15	18	23	19		
3/3/2011*	12	17	23	13	26	
3/6/2012*	15	11	17	19	18	
3/21/2013*	13	12	16	15	14	
		A	verage Tolerand	e		
3/7/2003	4.67	4.57	4.35	4.50	4.36	4.66
2/20/2004	4.46	3.87	4.21	4.20	4.67	4.42
3/2/2005	3.86	4.11	4.06	4.00	4.20	3.84
3/9/2007*	3.25	4.13	3.51	3.59	4.21	4.03
3/20/2010*	3.73	4.26	4.50	4.05		
3/3/2011*	3.96	3.45	3.96	3.68	4.18	
3/6/2012*	5.13	5.03	5.56	5.25	5.19	
3/21/2013*	4.42	4.85	5.10	4.40	4.22	
			% Clingers			
3/7/2003	35.3	21.4	42.9	39.1	41.2	45.5
2/20/2004	31.6	43.5	47.6	40.0	42.9	36.8
3/2/2005	50.0	28.6	44.8	51.9	50.0	52.4
3/9/2007*	27.0	18.8	33.3	27.3	30.8	47.9
3/20/2010*	48.1	25.7	24.5	28.6		
3/3/2011*	25.7	30.6	19.0	55.1	34.9	
3/6/2012*	26.3	28.6	19.6	23.8	30.3	
3/21/2013*	40.0	33.3	45.0	42.9	48.3	

Table 12. Comparison of SCI Metrics for First Quarter Samples from Lee Creek Watershed.

*Pennington and Associates composite method

	Upper Lee	Buckhorn	Cove	Jenkins	Mountain Fork	Little Lee					
Date		Stream Condition Index									
3/7/2003	12	12	20	18	16	16					
2/20/2004	14	20	18	20	16	20					
3/2/2005	20	18	20	20	20	20					
3/9/2007*	18	16	18	18	18	20					
3/20/2010*	20	18	18	18							
3/3/2011*	18	18	16	20	18						
3/6/2012*	14	12	12	14	14						
3/21/2013*	20	14	16	20	20						

Table 13	Comparison	of SCI Scores	s for First Quarter	Samples from I	Lee Creek Watershed.
----------	------------	---------------	---------------------	----------------	----------------------

*Pennington and Associates composite method

3.5.2 Fish Community

Fish communities of Lee Creek watershed were examined using community tolerance structure, percent dominant functional feeding groups, and IBI scores for fishes collected by FSU from 2008 to 2013. Based on available data, fish communities were dominated by species intermediate and intolerant to pollution perturbation (Table 14). Data indicate community tolerance structure may represent relatively sensitive fish communities within the Lee Creek watershed. Fish communities of Lee Creek have been consistently dominated by insectivores (50%-82%; Table 14). Fish communities are typically dominated by insectivorous fishes in most North American waters (Barbour et al. 1999). Using percent insectivorous fishes in a community provides information regarding the condition of the fish food base. As the fish food base responds to changes in the quality and quantity of available resources (natural or anthropogenic), changes in the functional feeding structure of fish communities are expected to occur (Barbour et al. 1999). Index of biotic integrity (IBI) scores were calculated using 12 metrics taken from Rapid Bioassessment Protocols for Use in Stream and Rivers (Plafkin, 1989) Metrics included: percent native fishes, percent darters and madtoms, percent sunfish, percent cyprinids, percent tolerant fish, percent omnivores, percent insectivores, percent carnivores, number of individuals, percent hybrids, and percent diseased. Scores for all 12 metrics are then added and results ranged from a possible maximum IBI score of 60 (excellent) to a possible minimum of 12 (very poor).

IBI scores from the watershed varied across sites and across years and ranged between a minimum of 38 to a maximum of 50. Using Fort Smith's IBI criteria, which is based on the

criteria developed by EPA (Plafkin, et.al., 1989), fish communities of Lee Creek watershed fluctuate within the fair to good range (48 points is the threshold for the good category), and have remained relatively stable over time (Table 14). Generally the smaller streams in headwater areas of the watershed have scored lower than the larger more developed streams in the watershed. This is typical of small streams in smaller drainage areas where there is less perennial flow and less diverse habitat to support high quality perennial fisheries.

Sites	Year	% Intolerant Taxa	% Intermediate Taxa	% Tolerant Taxa	% Insectivore	% Herbivore	% Other	IBI
	2008	23.1	61.5	15.4	69.2	7.7	23.1	48.0
	2010	46.2	46.2	7.7	69.2	15.4	15.4	50.0
Fall Creek	2011	20.0	60.0	20.0	70.0	10.0	20.0	44.0
	2012	33.3	50.0	16.7	75.0	8.33	8.33	48.0
	2013	30.0	40.0	30.0	70.0	10.0	20.0	44.0
	2008	16.7	50.0	33.3	50.0	16.7	33.3	40.0
	2010	21.4	35.7	7.1	57.1	7.1	35.7	42.0
Buckhorn	2011	33.3	44.4	22.2	77.8	11.1	11.1	44.0
Oreek	2012	30.0	50.0	20.0	80.0	10.0	10.0	42.0
	2013	28.6	28.6	42.9	57.0	14.3	14.3	38.0
	2008							
	2010	27.3	45.4	9.1	72.7	9.1	18.2	46.0
Cove Creek	2011	40.0	50.0	10.0	80.0	10.0	10.0	48.0
	2012	40.0	40.0	20.0	80.0	10.0	10.0	46.0
	2013	27.3	54.5	18.2	72.7	9.1	18.2	46.0
	2008	30.1	46.2	23.1	76.9	7.7	15.4	44.0
	2010	45.5	36.4	18.2	72.3	18.2	9.1	44.0
Mtn. Fork	2011	38.5	38.5	23.1	61.5	15.4	23.1	48.0
Oreek	2012	33.3	41.6	25.0	75.0	8.3	16.6	.0
	2013	36.4	45.5	18.2	81.7	9.1	27.3	46.0
Jenkins Creek	2013	22.2	56.1	11.0	66.7	11.0	11.0	44.0
Upper Lee	2013	26.7	46.7	26.7	73.3	6.7	26.7	44.0

 Table 14. Comparison of Fish Community Tolerance Structure, Functional Feeding Groups, and IBI Scores

 Among Stations within Lee Creek and Lee Creek Watershed for 2008-2013.

Summary

Overall, macroinvertebrate and fish communities within Lee Creek watersheds seem to be relatively diverse and stable compared to reference conditions. Although community metrics varied across sites and years, all macroinvertebrate communities have either remained stable or shown a general trend for increased quality. Over the years, all fish communities have been dominated by intermediate and intolerant species, insectivorous fishes, and calculated IBI scores were within the fair to good range. Based on fish and macroinvertebrate metrics evaluated the aquatic community appears to be maintaining its biological integrity with relatively sensitive and diverse communities throughout the Lee Creek watershed.

3.5.3 Periphyton Community

Periphyton are algae that live attached to bottom substrates in streams, rivers and lakes. They are the foundation of the food web in most aquatic systems and as such are referred to as primary producers. The abundance and diversity of periphyton may serve as an indicator of habitat suitability and water quality, particularly in regards to nutrient enrichment and energy availability.

The periphyton community was assessed in a qualitative fashion as part of the USA. Estimates of algal coverage were made in each reach for three groups of algae; filamentous, prostrate and floating. The results of the qualitative observations are provided in Table 15.

Station	Filamentous	Prostrate	Floating
LC-1	None	Moderate	None
LC-1.5	None	Sparse	None
LC-2	None	Sparse	None
LLC-1	Sparse	Moderate	None
LLC-2	Sparse	Moderate	None
WC-1	None	Moderate	None
JC-1	None	Moderate	None
MFC-1	Abundant	Abundant	None
CC-1	Sparse	Abundant	None

Table 15.	Summary	y of Peri	phyton	Abundance	(coverage)	Assessment.
-----------	---------	-----------	--------	-----------	------------	-------------

Periphyton (filamentous and prostrate) requires four main things to grow, light, nutrients, warmth, and a suitable substrate. Nutrient levels are fairly low in the Lee Creek Watershed; however, there is still ample phosphorus and nitrogen for algal growth. The water is clean and clear allowing for plenty of light penetration. Arkansas' mild climate allows for algal growth nearly anytime during the year, but the hot summers are still expected to create the best conditions for proliferation of periphyton. The cobble streambed that dominates in the Lee Creek watershed are a good substrate for growth of these algae. In spite of the sufficient nutrient levels and good habitat, periphyton growth was not found to be excessive in any sub-watershed, with the exception of MFC, where both filamentous and prostrate algae were

abundant. MFC has a large amount of bedrock substrate and more open areas for sunlight penetration resulting in ideal conditions for periphyton growth (Figure 19.)

Figure 19. MFC Bedrock Stream Bottom Promotes Algal Growth.

3.5.4 Habitat for Aquatic Biota

Physical habitat in streams includes all those physical characteristics that influence or provide sustenance to biological attributes, both botanical and zoological. Stream physical habitat varies naturally, as do biological characteristics; thus, habitat conditions differ even in the absence of point and anthropogenic non-point disturbance. Within a given ecoregion, factors such as stream drainage area, stream gradient, and geology (geomorphology) are likely to be strong natural determinants of many aspects of stream habitat, because of their influence on discharge, flood stage, and stream energy (both static and kinetic). In addition, land-use activities or in-stream physical modifications, such as channelization, channel diversion or dam construction directly or indirectly impact the habitat in a stream. Habitat for aquatic biota was visually evaluated as part of the USA. The stream reaches assessed during the USA appeared to offer good habitat for aquatic biota. Riffles accounted for a significant portion (>15%) of each reach and pools dominated in the lower reaches while runs dominated in the upper reaches. Cobble substrate was generally dominate in all reaches and woody debris was also common and offers additional habitat for larger fish. Riparian areas were generally forested with a

significant amount of pasture in some areas particularly in lower Lee Creek. The habitat in Lee Creek and in each of its major sub-watersheds is sufficient to maintain biological diversity and a good quality perennial fishery.

3.6 Hydrologic Analysis

The hydrologic regime of a stream (magnitude and frequency of flow) influences the shape of the stream channel, the type and abundance of habitat available to biota, and the type and load of pollutants transported in the system. Geology, land use, weather patterns and seasons affect the hydrologic regime of a stream. Understanding a stream's hydrology is integral to the assessment of stream stability, ecology and water quality.

Historical Streamflow Analysis at USGS Gauges

Streamflow in the Lee Creek watershed was analyzed using data from the United States Geological Survey (USGS) website (http://waterdata.usgs.gov/nwis/rt). USGS has gauging stations at three stream locations in the Lee Creek watershed, Lee Creek at Short (USGS No. 07249800, Lee Creek near Short (USGS No. 07249985) and Little Lee Creek near Nicut (USGS No. 07249920). Lee Creek at Short, is at monitoring station LC-2, Little Lee Creek near Nicut is at monitoring station LLC-2. Lee Creek near Short is below all monitoring stations and represents the majority of flow entering Lee Creek Reservoir. We compiled and analyzed the most recent 10 years of annual summary and daily data from the USGS for each of the three locations of interest in the Lee Creek watershed (Table 16). The annual summary and daily data from USGS provides the annual average discharge (cfs), lowest average monthly discharge (cfs), highest average monthly discharge (cfs), the seven-day average low flow (cfs), 90 percent exceedance (cfs), and the peak flow (cfs). The 90 percent exceedance statistic is the discharge that has been exceeded 90 percent of the time for the designated period, which in this case is 10 years.

Each stream gauge in the Lee Creek watershed displayed a seven-day low flow of zero, indicating that for at least seven consecutive days the streams average flow was 0 cfs at one point during the last 10 years (Table 16). Stream water becomes shallow when flows get low, increasing water temperatures, and decreasing dissolved oxygen levels which has the potential to impact fish and some macroinvertebrates. Studies have found that longer-lived more sensitive taxa such as stoneflies, and free-living caddisflies are less likely to proliferate in streams that dry seasonally. Taxa that are highly mobile or can withstand drying can recolonize

a stream more quickly and can be found in seasonally dry streams. Adequate water levels are essential to maintenance of healthy fish communities. Streams that have a history of drying seasonally have biotic communities that are adapted to drying, living in intermittent pools, or finding refugia in the hyporheic zone. Streams that dry seasonally may have less diverse, less sensitive taxa depending on the longevity and severity of the drying compared to streams that flow year around (Boulton, 2003).

 Table 16. Summary of Discharge Data from September 2004-2014, Collected from USGS Gauge Data.

Site	Annual average discharge (cfs)	Lowest monthly discharge (cfs)	Highest monthly discharge (cfs)	7 day Iow flow (cfs)	90% exceed	Peak flow (cfs)
Lee Creek near Short (LC-1)	553.8	0.15	4047.8	0	2.5	13,969
Lee Creek at Short (LC-2)	298.5	0.00	2527.6	0	1.3	8,903
Little Lee Creek 2	114.8	0.03	654.7	0	1.0	6,160

All three study streams have a peak flow at least an order of magnitude higher than the annual average discharge (Figure 20). The Lee Creek watershed has a moderate level of pasture land use with the majority of the land being forested. Pasture land use can typically influence streamflow through an increase in runoff from the pasture compared to runoff from forest. Although streams in the Lee Creek watershed have a notable level of pasture land use surrounding the streams, the majority of the watershed is mountainous-forested land. The topography may be influencing the hydrologic regime more than pasture land use. Mountain streams are usually considered to be flashy systems or systems that have rapid rates of change (Allan, 1995, Poff et. al, 1997). Figure 21 shows the flashy hydrograph of Little Lee Creek at Nicut, Oklahoma during a storm event. Streamflow increases by an order of magnitude in less than one day. Little Lee Creek rises quickly but the hydrograph shows that it drops slower than it rose and could be a consequence of the steep terrain and well drained soils. This hydrograph is fairly typical of Boston Mountain streams during runoff events.

Figure 21. Storm Hydrograph from Little Lee Creek at Nicut, Oklahoma (LLC2) on January 25, 2012. Hydrograph Data was Collected from USGS.

Hydrologic regime is a major determinant of physical form in streams and physical form is a major determinant in biotic diversity in streams (Bunn and Arthington, 2002). Biological communities are adapted to the historical flow conditions and these conditions should be considered when analyzing biological data in any watershed.

Stream Flow Analysis at Newly Installed Gauges on Major Tributaries

Five new gauging stations were installed in key sub-watersheds Weber Creek, Upper Lee Creek, Jenkins Creek, Cove Creek, and Mountain Fork Creek in October 2013. The gauging instrument installed was an In-situ Level Troll 500 which automatically records stream level at 15 minute intervals. Telemetry stations were also installed at three of the gauges at varied locations in the overall watershed. Each level Troll was maintained and data was downloaded throughout the year.

Instream flow measurements were manually collected at the gauging station by a field crew during baseflow and stormflow events as part of an effort to develop a relationship between stream level and rate of flow. Instream velocity was measured using a Marsh McBirney model 201 water current meter. Measurements were taken following protocols outlined in the GBM^c & Associates Quality Assurance Plan (GBM^c QAP, 2008). Flow calculations were completed using the velocity-area method. Three to five flow readings were collected at each gauging station for use in development of the rating curve (Figure 22). The curve will continually be updated as additional data is collected in subsequent monitoring years.

Figure 22. Relationship of Stage versus Flow at Mountain Fork Creek Gauging Station.

Once the rating curves were established at each site, the equation from each rating curve was used to calculate the flow from the level measurements collected every 15 minutes at the five sites. This flow data allows pollutant loading to be calculated more effectively for each sub-watershed. When graphing the flow data over time, hydrologic dynamics such as flashiness can

be seen visually. For specific rain events, the rise and fall can be dramatically different across the sub-watersheds (Figure 23). For Figure 23, flow was averaged for each day and plotted.

Figure 23. Daily Average Flow for the Five Sub-Watersheds.

3.7 GIS Non-point Source Assessment

An assessment of the Lee Creek watershed was completed using GIS resources including soils maps, land surface slope (DEM), land use, aerial photographs, etc. The assessment was focused on identifying possible non-point sources of pollutants that could be transported to the stream system during storm runoff events. The assessment was completed on a sub-watershed basis.

3.7.1 Land Use by Watershed

Land use was evaluated using 2006 land-use land cover data from the United States Geological Survey. Land use is an important attribute in a watershed analysis. The percent of pasture, row crops, and developed areas can provide great insight into a watersheds potential for NPS pollution. A summary of the land use assessment is provided in Table 17.

Landusa			Sub-wat	ershed (P	ercent la	nd use)		
	JC-1	LLC-1	LLC-2	LC-1	LC-2	CC-1	MFC-1	WC-1
Watershed Size (mi ²)	14.90	36.20	119.00	97.20	242.00	53.70	39.60	37.90
Water	0.04	0.02	0.08	0.06	0.59	0.01	0.01	0.08
Open space (developed)	3.08	3.32	2.34	2.63	2.07	2.24	2.57	4.01
Developed (urban/suburban)	0.05	0.09	0.06	0.07	0.03	0.02	0.04	0.44
Forest	78.28	73.14	80.43	84.78	77.60	84.02	84.40	65.82
Herbaceous/Scrub/Shrub	12.09	5.02	12.36	2.20	4.92	2.09	4.23	2.40
Pasture	6.46	18.39	4.40	9.97	13.57	11.54	8.62	27.27
Crops	0.00	0.00	0.00	0.02	0.03	0.00	0.00	0.01
Wetlands	0.00	0.02	0.33	0.28	1.18	0.09	0.13	0.05

Table 17. Percent Land Use by Sub-Watershed.

None of the sub-watersheds have significant levels of row crops (all less than 0.05%) or development (less than 0.5%). Four of the sub-watersheds (JC-1, LLC-2, LC-1 and MFC-1) have low percentages of pasture (less than 10%). Pastures are generally associated with cattle use, commercial fertilizer, poultry litter use as fertilizer, or any combination of the three. Each association can be a source of nutrients to the stream system. The portions of the watershed having the highest percentage of pasture are LLC-1 and WC-1, at 18.39% and 27.27%, respectively.

3.7.2 Riparian Buffer Impacts

Often times pasture land use can be associated with impact to riparian buffers as farmers clear forest to create larger pastures and as cattle grazing encroaching on the stream banks. Impacts from cattle overgrazing and frequent stream access was assessed during the USA's and were not found to be an obvious problem in the watershed. However, impacted riparian buffers from pasture creation (and loss of buffer from bank erosion) were found to be a common problem. Therefore, each main stem perennial stream (identified per USGS maps) in the associated subwatershed was examined through aerial photography to determine how many linear feet of stream was affected by loss of riparian buffer. These lengths were then divided by the total length of perennial stream in that sub-watershed to represent percent of stream with impacted riparian buffers and assess where significant problems might exist (Table 18).

		Sub-watershed								
Parameter	JC-1	LLC-1	LLC-2	LC-1	LC-2	CC-1	MFC-1	WC-1		
Length impacted buffer (ft)	626	3662	4085	3240	20,122	11,429	7875	7603		
Total stream length (ft)	28,987	64,776	52,318	121,434	115,737	99,000	66,685	51,215		
Percent stream affected	2.2	5.7	7.8	2.7	17.4	11.5	11.8	14.8		

Table 18. Summary of Impacted Riparian Buffer Analysis.

Jenkins Creek (JC-1) and upper Lee Creek (LC-1) have small percentages of impacted riparian buffer (<3%) while the lower reaches of Lee Creek (LC-2) and Webber Creek (WC-1) have considerably higher percentages, at 17.4% and 14.8%, respectively. This is fairly common in watersheds that have greater percentages of pasture and riparian disturbance in their lower reaches, where the land begins to flatten allowing for more land suitable for pasture.

3.7.3 Land Slope

A land slope analysis was also completed for the watershed, and is provided in Table 19. Slopes are generally homogenous between sub-watersheds. Weber Creek has the flattest slope and the highest percentage of pasture and impacted buffer, supporting the concept that pasture abundance and size increases along with the associated riparian disturbance in flatter slope areas lower in the watershed. In addition to the connection between flatter slopes and increased pasture land use, there is a connection between steeper slopes and increased erosion potential, both on the land and stream banks. High slope (steep) areas have a higher potential for soil loss during high volume rain events and those areas also provide less opportunity for infiltration, allowing more water to run-off into the stream channels which can cause increased stream bank erosion and channel scour. Slope in the majority of the headwaters of Lee Creek are moderately high, providing the potential for rainfall to be highly erosive and stream channels to scour during large rain events.

	Sub-watershed									
Slope (percent)	JC-1	LLC-1	LLC-2	LC-1	LC-2	CC-1	MFC-1	WC-1		
0-5	12.9	23.4	12.2	12.6	23.5	15.4	21.3	25.9		
6-15	10.8	11.0	0.3	23.8	13.6	25.5	17.9	29.8		
16-30	66.2	59.9	87.5	62.0	56.9	54.8	58.2	44.1		
31-45	10.1	5.8	0.0	1.2	6.1	4.4	2.6	0.3		
46-60	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.0		

Table 19. Summary of Land Slope Analysis.

3.7.4 Soils

Soils on the land surface in the watershed are primarily dominated by the Nella, Enders, Hector and Linker soil series. These soils are composed mostly of a gravely sandy loam, and have a moderate overall potential for erosion. However, when linked with the steep slopes in some of the sub-watersheds, significant soil loss can occur during heavy rain events.

3.7.5 Agricultural Animal Numbers

Numbers of agricultural animals were estimated in the watershed using active poultry house counts from a field survey and the county agricultural census data for cattle. In the case of poultry houses, each broiler house is assumed to be managed consistent with industry standards. Houses generally contain approximately 24,000 birds each, have 5-6 batches per year and are cleaned out approximately 2 times per year. Poultry litter (a combination of manure and bedding material) is frequently used as fertilizer on pastures in Arkansas and Oklahoma and its use was observed in the Lee Creek watershed during the USA. For cows the number of "all cattle and calves" for each county were used, along with the number of acres of pasture in each county, to calculate number of cows per acre. Cows were assumed to be evenly spread out over the pastures in the counties affected. A cows/acre number was then applied to each sub-watershed using the number of acres of pasture determined through the land use analysis. Where a sub-watershed occupied more than one county the value for cows/acre was weighted proportional to the amount of the sub-watershed in each county. Agricultural animal estimates is provided in Table 20.

	Sub-watershed									
Animal	JC-1	LLC-1	LLC-2	LC-1	LC-2	CC-1	MFC-1	WC-1		
All Cattle/Calves	226	1,561	516	3,284	1,738	2,022	940	2,979		
Poultry-Broilers ¹	0	0	0	48,000	0	288,000	0	120,000		

Table 20. Agricultural Animal Estimates per Sub-Watershed.

¹Poultry numbers based on total number on active farms at a point in time, not total produced annually. Cattle numbers are typical for this region. Poultry counts under 200,000 are low for Crawford County, while counts in excess of 200,000 are more typical.

3.7.6 Unpaved Roads

Unpaved roads (gravel forest roads and OHV trails) are common in the Lee Creek Watershed. There are over 300 miles of unpaved roads in the watershed. During storm events these roads can transport significant loads of sediment into adjacent streams (Figure 24). The magnitude of the sediment load varies dependent on many factors including; proximity to streams, condition of the road, slope and the design of the road. Forest roads can be designed to include BMPs that reduce erosion and transport of sediment.

Figure 24. Sediment Plume entering Cove Creek from Unpaved Road Runoff.

Miles of unpaved road were determined from GIS road layers for each sub-watershed in Arkansas. Similar data could not be identified for Oklahoma so the miles of unpaved roads in Oklahoma was estimated based on density encountered in Arkansas. A summary of this data is provided in Table 21. Sediment loading for each mile of unpaved road was estimated based on a recent study completed in Pennsylvania by the Center for Dirt and Gravel Road Studies (Penn State University). The study determined the load of sediment transported for several different unpaved road types and conditions that would result from a 0.6 inch rain event occurring over 30 minutes. For purposes of the Lee Creek Watershed assessment an average rate of sediment transport was set at 485 lb/mile of unpaved road per rain event. The 485 lb/mi sediment rate was the average of the runoff rate from roads with average maintenance and traffic levels and roads that had been recently topped with fresh aggregates which produce much lower levels of sediment runoff. Twelve rain events (>1.0 inch) were assumed to occur each year and each rain event would result in 485 lb sediment per mile of road (Table 21).

	JC-1	LLC-1	LLC-2	LC-1	LC-2	CC-1	MFC-1	WC-1
Unpaved Roads (mi)	13.7	33.3	110.0	51.3	140.5	25.6	31.6	63.9
TSS Load Annually (lbs)	79,877	194,063	640,087	298,765	817,594	148,701	183,380	371,612
Adjusted Load ¹ (1000s Ibs)	79.9	194.0	446.0	298.8	518.8	148.7	183.8	371.6

 Table 21. Summary of Unpaved Roads in Lee Creek Watershed.

¹Adjusted load in 1000s lbs better represents the larger watersheds portion by subtracting out the load form the upper watershed (i.e. LLC-2 minus LLC-1, and LC-2 minus LC-1).

4.0 Loading Analysis

4.1 Delineation of Lee Creek Loads

Loading of pollutants in the Lee Creek watershed was calculated from the baseline and storm flow data collected during the study. Loading was also calculated from the historical data collected by the FSU at monitoring stations where USGS gauge data was available. However, only three sub-watersheds of the eight in the Lee Creek watershed are represented by USGS gauge stations (LC-2, LLC-2 and WC-1). Therefore, the focus of the loading analysis will be the new data collected during this study. A summary of the load for key constituents is provided in Table 22.

Station	Station Baseline Load (lb/d)			Storm Flow Load (lb/d)		
Station	TSS	NO3+NO2-N	TP	TSS	NO3+NO2-N	TP
JC-1	540	40.7	2.2	37,312	172	38.7
LLC-1	1,184	112	7.9	11,470	181	103
LLC-2	3,946	278	26.9	609,407	1,318	931
LC-1	3,739	299	31.0	330,388	1117	772
LC-2	5,940	531	55.4	241,026	2,030	675
WC-1	1,177	82.7	7.8	31,567	372	94
CC-1	2,344	143	19.2	76,655	572	352
MFC-1	1,416	101	10.8	276,478	895	666
BH-1				706	44	3.84

Table 22.	Average	Loading	of key	constituents.
	Average	Loading	UT NC	y constituents.

The load of TSS appears to be greatest in the sub-watersheds LC-1, MFC-1 and LLC-2. Loading of Nitrate+Nitrite-N and phosphorus appears to be greatest in the LC-2, LC-1 and LLC-2 sub-watersheds. However, loading viewed in this fashion is misleading when used to assess critical NPS that need to be addressed, as some of the sub-watersheds are much larger than others and thus will have greater flows which have a direct influence on load. In order to account for watershed size, loads from each of the sub-watersheds were normalized according to watershed area (in acres) to arrive at a loading in each watershed on a per acre basis (Table 23).

Station	TSS (lb/acre)	NO3+NO2-N (lb/acre)	TP (lb/acre)
JC-1	3.913	0.0181	0.0041
LLC-1	0.495	0.0078	0.0045
LLC-2	7.9749	0.0172	0.0122
LC-1	5.311	0.0180	0.0124
LC-2	1.557	0.0131	0.0044
WC-1	1.301	0.0153	0.0039
CC-1	2.23	0.0167	0.0097
MFC-1	10.909	0.0353	0.0263
BH-1	0.19	0.0120	0.0010

Table 23.	Loading of ke	v storm flow	constituents	on a i	per acre basis.
	Loading of R	y Storn now	constituents	un a j	

When loading is evaluated on a per unit area basis, then it becomes clear which subwatersheds have land uses that are producing the most pollutants during runoff events. Subwatersheds MFC-1, LLC-2, and LC-1 have the highest TSS storm flow load and sub-watersheds MFC-1, LC-1, and LLC-2 have the highest nutrient loads per acre of land (Figures 25 and 26).

Figure 25. Storm flow load of TSS in pounds/acre.

Figure 26. Pounds of storm flow nutrients on a per acre basis.

Figure 27 provides a breakdown of the portion of TSS load attributed to each sub-watershed. Load reductions will be targeted for the sub-watersheds identified (LC-1, LLC-2 and MFC-1). Load reductions will be accomplished accordingly for these key sub-watersheds as well as other sub-watersheds according to the plan outlined in Sections 5 and 6.

4.2 Recommended Load Reductions

Based on the Designated Use Assessment Criteria (Section 3.1) all sub-watersheds in the Lee Creek watershed appear to be maintaining their Arkansas designated uses and are producing high quality water, consistent with their designation as Extraordinary Resource Waters. The Oklahoma Use Assessment Criteria are also being maintained (according to the data presented in this study), with the exception of the Scenic Rivers total phosphorus criteria in the Oklahoma portion of the watershed (specifically Little Lee Creek and Lee Creek) which exhibits the potential for exceedance of the criteria. Additional phosphorus data is necessary to verify the exceedance of the total phosphorus criteria as the concentrations under baseflow conditions appear to be very close to the 0.037 mg/l criteria.

To further emphasize the high quality of the water in the Lee Creek watershed, the data collected by the FSU over the past several years was compared to ambient water quality data collected by the Arkansas Department of Environmental Quality from the least disturbed streams in the Boston Mountain Ecoregion of Arkansas. Figures 28-30 present the

comparisons of the sites water quality for total phosphorus, TSS and Nitrate+Nitrite-N. Note, different detection levels were used by the two reporting entities and had to be normalized in order to compare this data. This was done by using the FSU detection levels for all data. These charts depict the mean and 95% confidence interval as diamonds and also represent the mean plus or minus two standard deviations (dotted lines). ADEQ reference stations are identified with a "Ref" in the site name. As can be seen the water quality in the Lee Creek watershed for these key constituents is fairly typical for high quality Boston Mountain streams.

Figure 28. Comparison of TSS levels in Lee Creek WS to Boston Mountain least disturbed streams.

Figure 29. Comparison of total phosphorus levels in Lee Creek WS to Boston Mountain least disturbed streams.

Figure 30. Comparison of NO3+NO2-N levels in Lee Creek WS to Boston Mountain least disturbed streams.

Based on the results of the Designated Use Assessment and the similarity of the water quality to least disturbed Boston Mountain Streams no load reductions are required to meet Arkansas and Oklahoma general water quality standards. However, considering Oklahoma 303(d) listing

of Little Lee Creek and Lee Creek for bacteria and metals and due to the potential for exceedance of Oklahoma's special phosphorus standard for Scenic Rivers, reductions in TSS (which will also carry along with it reductions in phosphorus, metals and bacteria loading) should be targeted in an effort to ensure maintenance of the standard and to improve water quality entering Lee Creek Reservoir. A proactive goal of 10% reduction of TSS loading will be targeted for the key sub-watersheds, LC-1, LLC-2 and MFC-1.

5.0 Pollution Source Assessment

The Lee Creek watershed was broken down into eight sub-watersheds to create watershed sizes that were manageable, to simplify the identification of potential sources of pollution from point sources and non-point sources associated with storm water runoff, and to ease the analysis process. The critical sub-watersheds where the most TSS and nutrients originate were discussed in Section 4.0. Figure 31 provides a map of the ranking of critical sub-watersheds producing TSS, which will be the main focus of load reduction goals for the watershed. Potential sources of pollution in each of the eight sub-watersheds delineated and analyzed are presented below.

5.1 Point Sources

Lee Creek has two wastewater dischargers in the watershed area assessed for this plan, Devils Den State park (NPDES Permit No. AR0037940) and Cedarville Public Schools (NPDES Permit No. AR0041289). Devils Den State park discharges treated wastewater into Lee Creek in sub-watershed LC-1. Cedarville Public Schools discharges treated wastewater into Lee Creek in sub-watershed WC-1. Both dischargers have design flows less than 0.1 mgd. Effluent limits are presented in Table 24. There are no limits for phosphorus or nitrate, however, Devils Den has a monitor and report requirement for total phosphorus.

Figure 31. Ranking of critical sub-watersheds producing TSS.

Parameter	Load, Monthly Average (Ib/day)		Concentrati Average	on, Monthly e (mg/L)	Daily Max (mg/L)	
i arameter	Cedarville	Devils Den	Cedarville	Devils Den	Cedarville	Devils Den
CBOD5 (May-Oct)	1.5	3.3	20.0	10.0	30.0	15.0
CBOD5 (Nov-Apr)	1.9	3.3	25.0	10.0	37.5	15.0
TSS (May-Oct)	1.5	5.0	20.0	15.0	30.0	22.5
TSS (Nov-Apr)	2.3	5.0	30.0	15.0	45.0	22.5
Ammonia-N (April)	0.4	1.8	5.3	5.3	5.3	5.3
Ammonia-N (May- Oct)	0.4	1.7	5.0	5.0	7.5	7.5
Ammonia-N (Nov- Mar)	1.1	3.3	15.0	10.0	15.8	15.0
Dissolved Oxygen	Dissolved Oxygen 5.0 mg/L minimum Cedarville, 2.0 mg/L minimum Devils Den				n	
Fecal coliform (col/100mL)			1000	200	2000	400
Oil and Grease	0.8	3.3	10.0	10.0	15.0	15.0
pH (su)	6.0-Min, 9.0-Max					

Table 24	NPDES	Permit Limit	s for Cedarvill	Public Scho	ols and Devils	Den State Park
			S IOI OCUUI VIII			

5.2 Non-point Sources

JC-1 Sub-Watershed – this is in the headwaters portion of the watershed in Oklahoma and is mostly composed of forest. Cattle pasture is the dominate land use with potential for non-point source pollution. A list of all potential non-point sources identified in the sub-watershed are listed below:

Non-point source	Severity/Risk
Cherokee nation landfill	Moderate
Cattle (226)	Low
Fertilized pastures (poultry litter or commercial fertilizer)	Low
Stream bank erosion	Moderate-High
Septic tanks	Low
Un-paved roads	Moderate

LLC-1 Sub-Watershed – this sub-watershed is also in the headwaters portion of the watershed in Oklahoma and is mostly composed of forest. Cattle pasture is more prominent in this sub-watershed than in JC-1 and is the dominate land use with potential for non-point source pollution. A list of all potential non-point sources identified in the sub-watershed are listed below:

Non-point source	Severity/Risk
Cattle (1561)	Moderate
Fertilized pastures (poultry litter or commercial fertilizer)	Moderate
Stream bank erosion	Moderate
Septic tanks	Low
Un-paved roads	Moderate

LC-1 Sub-Watershed – is in the headwaters portion of the watershed in Arkansas and is mostly composed of forest. Cattle pasture is the dominate land use with potential for non-point source pollution. A list of all potential non-point sources identified in the sub-watershed are listed below:

Non-point source	Severity/Risk
2 poultry houses	Low
Cattle (3284)	Moderate
Fertilized pastures (poultry litter or commercial fertilizer)	Moderate
Septic tanks	Low
Un-paved roads	Moderate
Stream bank erosion	Moderate-High
Natural gas well (1)	Low

CC-1 Sub-Watershed - this sub-watershed drains the north central portion of the watershed. The land-use is primarily forest with about 12% pasture. Potential non-point sources are listed below:

Non-point source	Severity/Risk
12 poultry houses	Moderate
Cattle (2022)	Moderate
Fertilized pastures (poultry litter or commercial	Moderate
Stream bank erosion	Minor-Moderate
Septic tanks	Low
Un-paved roads	Moderate

MFC-1 Sub-Watershed – this sub-watershed drains the west central portion of the watershed along the Oklahoma border and drains into Lee Creek at Natural Dam, Arkansas. HWY 59 runs very close to the main channel of the Mountain Fork Creek for several miles. Potential non-point sources are listed below:

Non-point source	Severity/Risk
Cattle (940)	Low
Fertilized pastures (poultry litter or commercial fertilizer)	Low
Stream bank erosion	Moderate-High
Septic tanks	Low
Un-paved roads	Moderate
Paved roads (HWY 59)	Moderate
Developed areas along HWY 59.	Low-Moderate

WC-1 Sub-Watershed – this sub-watershed drains the southwest portion of the Lee Creek watershed in Arkansas and drains into Lee Creek southeast of Short, Oklahoma. The land-use is primarily forest but contains the largest portion of pasture in the watershed (27%). Potential non-point sources are listed below:

Non-point source	Severity/Risk
5 poultry houses	Low-Moderate
Cattle (2979)	Moderate
Fertilized pastures (poultry litter or commercial fertilizer)	Moderate
Stream bank erosion	Moderate
Septic tanks	Low
Un-paved roads	Moderate
Natural gas well (1)	Low

LLC-2 Sub-Watershed - this sub-watershed drains the lower portion Little Lee Creek in Oklahoma and enters Lee Creek near Short, OK. The land-use is primarily forest with about 4% pasture. Potential non-point sources are listed below:

Non-point source	Severity/Risk
Cattle (516)	Low
Fertilized pastures (poultry litter or commercial fertilizer)	Low
Stream bank erosion	High
Septic tanks	Low
Un-paved roads	High

LC-2 Sub-Watershed - this sub-watershed drains the south central portion of the watershed in Arkansas and Oklahoma and ends near the confluence with Little Lee Creek. The land-use is primarily forest with about 14% pasture. Potential non-point sources are listed below:

Non-point source	Severity/Risk
Cattle (1738)	Low-Moderate
Fertilized pastures (poultry litter or commercial fertilizer)	Low-Moderate
Stream bank erosion	High
Septic tanks	Low
Un-paved roads	High

5.3 Source Water Assessment by ADH

In 2000 a Source Water Assessment was completed for Lee Creek Reservoir by the Arkansas Department of Health. This assessment evaluated the vulnerability and susceptibility of the reservoir to potential sources of contamination (PSOC) in the watershed. The assessment ranked each PSOC based on where it was located in proximity to the intake structure and what its potential was for health concerns. Lee Creek Reservoir was classified with a medium susceptibility rating based primarily on its small size and large intake volume. The top three PSOC's identified that affected the rating were:

- 1. Multiple road crossings
- 2. Chicken houses
- 3. Septic systems

The findings of the pollution source assessment in this study are somewhat consistent with the findings of the Source Water Assessment. One minor exception is that the number of active poultry houses has decreased in recent years and may no longer be a top concern.

5.4 Priority Sub-Watershed Ranking

Many factors play into determining which sub-watersheds are priority to address with implementation efforts and what impacts need to be addressed first. To aid in this analysis a matrix was developed (Appendix D) to consider each of the impact assessment categories including; storm water TSS loading, storm water nutrient loading, %pasture, amount of impacted riparian buffers, amount of bank erosion, miles of unpaved roads and concentration of agricultural animals. Scores were assigned to sub-watersheds that ranked either first (3 points), second (2 points) or third (1 point) worst in a given impact category (Table 25). Maximum possible score was 21. The higher the score the higher the priority. Table 26 provides a summary of the score totals for each sub-watershed.

Rank #	TSS Loading	Nutrient Loading	%pasture	Impacted riparian	Bank erosion	Cattle	Unpaved Roads
1	MFC-1	MFC-1	WC-1	LC-2	LLC-2	LC-1	LC-2
2	LLC-2	LC-1	LLC-1	WC-1	JC-1	WC-1	LLC-2
3	LC-1	LLC-2	LC-2	MFC-1	MFC-1	CC-1	WC-1
4	JC-1	CC-1	CC-1	CC-1	LC-2	LC-2	LC-1
5	CC-1	LLC-1	LC-1	LLC-2	LC-1	LLC-1	LLC-1

Table 25	Ranking	of each	Impact	Category for	Fach	Sub-Watershed
I abie 2J.	Nanking	UI Cauli	πιμασι	Calegory IOI	Laun	Sup-water sneu

Table 26. Total Scores and Matrix Ranking.

Sub-watershed	Score
LLC-2	8
MFC-1	8
WC-1	8
LC-2	7
LC-1	6
LLC-1	2
JC-1	2
CC-1	1

According to the matrix ranking, the three key sub-watersheds in need of source reductions are LLC-2, MFC-1 and WC-1 (Figure 32). In addition, LC-2 and LC-1 were shown in the monitoring to have higher TSS and nutrient loads than did WC-1 and should also be a focus of reduction efforts.

5.5 Modeling NPS Loads and Reduction Potential

A simple water quality model was used to determine the potential of different management practices to reduce TSS and nutrients in the watershed. The Center for Watershed Protections Watershed Treatment Model (WTM) was used for this purpose. Each sub-watershed was modeled independently to arrive at a predicted total load without management measures. Then appropriate management measures were implemented in the model to assess their potential to reduce TSS and nutrients.

The WTM is a land-use based model that utilizes annual rainfall, soil hydrologic groups and land-use categories to calculate primary pollutant loading in a watershed. Additional inputs for secondary pollutant loading can be added to fine tune the loading estimates. Secondary inputs

utilized for this study include: septic systems, unpaved roads, stream channel erosion and livestock.

Figure 32. Non-point source scoring and priority ranking by sub-watershed.

Management practices evaluated with the WTM model include: septic system education (Section 6.1) and repair programs, stream restoration (Section 6.2), riparian buffer restoration (Section 6.2) and urban storm water BMPs (SW retrofits) (Section 6.1).

The WTM model is used in this study exclusively as a tool to determine which sources of sediment and nutrients appears to be having the most affect, and from a management perspective, which practices will achieve the load reduction goals of the WMP. A summary of the model load estimates is provided in Table 27 and 28, for TSS and phosphorus, respectively. Model excerpts are provided in Appendix E.

	Sub-watershed (TSS Ib/year)									
Source	JC-1	LLC-1	LLC-2	LC-1	LC-2	CC-1	MFC-1	WC-1	Total	
LDR ¹	38,050	100,051	245,800	218,706	421,978	100,083	84,452	133,719	1,342,839	
MDR ¹	813	3,429	7,815	7,326	7,575	1,142	1,629	18,175	47,904	
Unpaved Roads	79,910	194,115	639,963	817,617	298,718	148,845	183,827	371,769	2,734,764	
Forest	743,470	1,688,840	6,127,440	5,250,160	12,004,990	2,883,260	2,133,640	1,584,660	32,416,460	
Rural ²	177,500	542,400	1,280,700	758,300	2,867,200	468,400	325,700	718,900	7,139,100	
Water	620	1,395	48,670	31,775	427,180	4,805	5,580	4,960	524,985	
Septic Systems	229	543	2,449	5,405	2,256	2,208	1,448	7,457	21,995	
Channel erosion	1,800,000	2,898,000	3,606,000	5,534,000	6,996,000	1,786,000	3,704,000	814,000	27,138,000	
Livestock	0	0	0	0	0	0	0	0	0	
Total	2,840,592	5,428,773	11,958,837	12,623,289	23,025,897	5,394,743	6,440,276	3,653,640	71,366,047	

Table 27. Summary of Model Predicted TSS Loading.

¹LDR stands for low density residential and MDR stands for medium density residential (which also includes commercial areas in this model). ²Rural land loading calculations are the default rates in the model, they include pollutants from grazed cattle, fertilizer

²Rural land loading calculations are the default rates in the model, they include pollutants from grazed cattle, fertilizer used for hay and other common uses of rural land.

Figure 33. Overall sources of sediment.

Table 28. Summary of Model Predicted Phosphorus Loading.										
		Sub-watershed (TP lb/year)								
Source	JC-1	LLC-1	LLC-2	LC-1	LC-2	CC-1	MFC-1	WC-1	Total	
LDR	241	633	1,555	1,384	2,670	633	534	846	8,496	
MDR	5	22	49	46	48	7	10	115	302	
Unpaved Roads	12	29	96	123	45	22	28	56	411	
Forest	1,487	3,378	12,255	10,500	24,010	5,767	4,267	3,169	64,833	
Rural	1,243	3,797	8,965	5,308	20,070	3,279	2,280	5,032	49,974	
Water	2	5	157	103	1,378	16	18	16	1,695	
Septic Systems	6	14	61	135	56	55	36	186	549	
Channel erosion	1,260	2,029	2,524	3,874	4,897	1,250	2,593	570	18,997	
Livestock	0	0	0	144	0	864	0	360	1,368	
Total	4,256	9,907	25,662	21,617	53,174	11,893	9,766	10,350	146,625	

Table 28.	Summary	/ of	Model	Predicted	Phos	phorus	Loading
-----------	---------	------	-------	-----------	------	--------	---------

Figure 34. Overall sources of Phosphorus.

The largest source of TSS and phosphorus is shown by the modeling to be from forested landuses. However, pollutant loading from forest can generally be considered to be naturally occurring (background) load that is not practically targeted for reductions.

Based on the results of the modeling it appears that the key sources of TSS that need to be addressed for sediment reduction are:

- Stream channel erosion
- Pasture management
- Unpaved roads

Nutrient loads were assessed in the model primarily looking at phosphorus which is the key nutrient of concern in the watershed. Based on the modeling of phosphorus loading the key sources that need to be addressed are:

- Pasture management
- Stream channel erosion
- Residential/commercial

The portion of sediment and nutrients coming from each sub-watershed varies as does the load from each source. For example, some sub-watersheds will benefit more from stream bank
restoration and other watersheds will benefit more from pasture management. However, overall the key sources noted above are those that need to be addressed first in the Lee Creek watershed.

5.6 Discussion of Priority Ranking

A ranking of the stream impacts/disturbances identified in the watershed was compiled, consistent with the matrix and modeling results, and are presented in Table 29. Rankings are based on which impacts could be expected to provide the most load reduction of sediment and nutrients to the system if appropriate management measures were implemented. The most critical problem area is ranked first and the least critical, last.

Stream bank erosion is fairly prominent in the Lee Creek Watershed (Figure 35). Bank erosion is believed to be a major source of sediment and nutrients in each of the sub-watersheds that had high percentages of stream bank length instability (LLC-2, LC-2, JC-1 and MFC-1). Active bank erosion can add thousands of tons of sediment and nutrients to the stream system during high flow events. These sediment and nutrient loads will ultimately end up at the bottom of the Lee Creek Reservoir or in the drinking water treatment plant. It is costly to remove sediment/turbidity from drinking water. Therefore, reduction and prevention of stream bank erosion should be an immediate goal in the watershed.

Figure 35. Streambank erosion on CC and the MFC.

The lack of adequate riparian vegetated buffers in several reaches of the stream is a potentially a problem. Well developed riparian buffers serve to shade the stream, reducing solar energy inputs and decreasing water temperature; and they serve to stabilize the stream banks, protecting them from erosion and providing habitat for aquatic biota. Riparian buffers also serve to filter out pollutants in storm water runoff and help to regulate the stream hydrograph during runoff events (see Section 3.6). All sections of stream lacking riparian buffers should be considered for re-vegetation with native trees and under story plants as a pasture BMP.

Rank	Location	Impact/Disturbance
1	MFC-1	Stream bank erosion
2	LLC-2	Stream bank erosion
3	LC-2	Stream bank erosion
4	LC-1	Stream bank erosion
5	WC-1	Pasture run-off
6	LC-2	Pasture run-off
7	LLC-2	Pasture run-off
8	MFC-1	Hwy 59 corridor storm water runoff
9	LC-2	Urban run-off
10	WC-1	Urban run-off
11	LC-1	Unpaved Roads
12	LLC-2	Unpaved Roads

 Table 29. Priority ranking of Lee Creek impacts/disturbances from worst to least.

Mountain Fork Creek poses a unique circumstance in the watershed. The monitoring data indicates it carries the largest load of sediment. It has one of the smallest amounts of pasture and developed land. However, the USA indicates it has one of the highest bank erosion rates in the watershed. These seemingly contradicting attributes are believed to be caused by Hwy 59 corridor which parallels the main stem of MFC for nearly its entire length, never being more than about 0.5 miles from it. The proximity of the highway also concentrates all the developed land up and down the highway corridor, and puts much of the agriculture in the same area. Therefore, all types of BMPs recommended in this WMP are recommended for use in the MFC sub-watershed.

6.0 Recommendations for Watershed Management

The following sections provide recommendations for management of the Lee Creek watershed through protection, enhancement and restoration. Ideally all recommendations could be easily implemented. However, this not being the case, the final portion of this section provides a ranked list of recommendations based on priority and necessity. The recommendations for watershed management are designed to address and remedy the critical problem areas/sources discussed in the previous section and listed in Table 29. It is assumed that a reduction in sediment (TSS) will also bring a parallel reduction in phosphorus in a similar proportion. Therefore, only sediment reduction loading is provided in this section.

6.1 Land-Use and Runoff Management

The following are a list of best management practices recommended to protect water quality and/or the hydrologic regime of Lee Creek. Practices are recommended according to land-use type. The listings are not comprehensive but provide those typically applied successfully to such land-uses as those found in the Lee Creek watershed. Reduction estimates and costs (Section 9.0) are based on a survey of literature values from documents cited in Section 10.0.

Agricultural Land-Use

In each sub-watersheds, and particularly in sub-watersheds WC-1, LLC-2 and LC-2, where pasture is the most prevalent, it is recommended that landowners be encouraged to consider implementation of pasture management practices. This encouragement probably needs to occur as some form of educational materials mail out or forum. Assistance with these types of efforts is available through the National Resource Conservation Service, the Arkansas Natural Resources Commission, the University of Arkansas Cooperative Extension Service and others.

For pasture with on-going grazing operations the following BMPs should be considered in all sub-watersheds:

- Riparian buffers along stream corridors. Minimum of 25 feet forest and 25 feet native grasses. This protects the stream banks from erosion and provides filtration of sediment and associated pollutants in the runoff.
- Alternative water sources (away from stream) for cattle use. This helps keep the cattle out of the stream and away from the banks where they contribute to erosion.
- Fencing cattle out of stream.

- Rotating pasture usage. This helps prevent over grazing, preventing grasses from becoming too thin or trampled, allowing them to help buffer the stream. It also helps prevent soil compaction.
- Control stocking rate, number of head per acre of pasture.
- Potential load reductions from use of these management practices in key subwatersheds are: 231,557 lbs. annually. Estimate based on implementation of alternate water sources (Evans, B.M. 2001).

For agricultural land being used for hay operations in all sub-watersheds the following BMPs should be considered:

- Riparian buffers along stream corridors (see detail above).
- Control fertilizer applications (magnitude, timing and method) according to soil tests and USDA or NRCS recommendations to maximize productivity yet protect water quality.
- Use of cover crops during off season. Prevents top soil erosion, and utilizes remaining nutrients.
- Crop rotation. Maintains cover on soils and improves soils.
- Potential load reduction from use of cover crops or fertilizer management is: 231,557
 Ibs annually (Evans, B.M. 2001).

Rural Residence On-Site Treatment Systems (Septic Systems)

For rural residences that use septic systems the following BMPs are recommended to ensure nutrient loading is minimized::

- Septic system education.
- Septic system inspection and repair program.
- Septic system upgrades.
- Septic system retirement (convert to city sewer where available).
- > Reduction potential not assessed as it is not a significant source (see Section 5.0).

Developed - Commercial and Industrial Land-Uses

In all sub-watersheds and particularly in LC-2, WC-1 and MFC-1 it is recommended that facilities and commercial establishments be encouraged to adopt industry specific BMPs. Sub-watersheds WC-1 and LC-1 each contain one natural gas well pad (Figure 36). There is also one well pad in a lateral drainage from the south to Lee Creek Reservoir. Well pads can be a significant source of sediments during construction, but this risk diminishes dramatically after soil stabilization with vegetation.

The following BMPs should be considered:

- Riparian buffers along stream corridors. In addition to the benefits discussed previously, buffers help control the storm flow hydrograph. Minimum 50 feet.
- Encourage green area enlargement and enhancement and reduce impervious surfaces on new and existing developments.
- Encourage good housekeeping practices. Keep outside storage areas covered, immediately clean up spills of liquid or dry materials, etc.
- Enforce construction storm water management plans.
- Land conservation. Where possible attain land or establish easements in areas critical to the stream (i.e. buffer zones, wetlands, etc.) and maintain these as green areas.
- Potential load reductions from use of these management practices in key subwatersheds are: 19,430 lbs annually. Reduction based on implementation of 6 storm water control features (one of each) including drainage to open space, water quality swales, wet ponds, grass filter strips, grass channels and bioretention (WTM Model).

Developed - Residential Land-Uses

In the overall watershed and particularly in sub-watersheds MFC-1 it is recommended implementation of best management practices by residents be encouraged.

For residential developments the following BMPs should be considered:

• Riparian buffers along stream corridors. Minimum 50 feet.

- Encourage green area enlargement and enhancement and reduce impervious surfaces on new and existing developments.
- Encourage good neighbor practices. Keep yard free of junk and garbage, proper disposal of pet waste, proper disposal of household chemicals, etc.
- Strictly enforce construction storm water management plans.
- Encourage (through incentives) or require use of low impact development techniques (LID) in new developments in critical areas or on steep slopes.
- Limit and manage fertilizer application
- Encourage watershed stewardship through education.
- Potential load reductions from use of these management practices in key subwatersheds are: 10,000 lbs annually. Reduction based on implementation of 6 storm water control features (one of each) including drainage to open space, water quality swales, wet ponds, grass filter strips, grass channels and bioretention (WTM Model).

Unpaved Roads Management

Several BMPs are available to decrease sediment transport form unpaved roads. The following BMPs are believed to be appropriate to the forest roads and dirt roads in the Lee Creek watershed:

- Aggregates replacement
- Water bars in steep sections
- Roadside ditch maintenance and check dams
- Proper road surface stabilization/road grading/maintenance
- Turnouts
- Potential load reductions from use of a combination of these management practices on approximately 50% of unpaved roads in key sub-watersheds are: 457,337 lbs annually (Bloser, S.M. and Sheets B.E., 2012).

Figure 36. Natural gas wells in the watershed.

6.2 Stream Corridor Restoration/Enhancement

Riparian Buffers

Riparian vegetated buffers are lacking or limited in several reaches of Lee Creek. As discussed previously in this report (Section 4.0) riparian buffers are critical to the health of a stream system. The following areas should be targeted for establishment or enhancement of vegetative riparian buffers: MFC-1, LLC-2, LC-2, LC-1 and CC-1, in order of priority.

Buffer widths should be planted as wide as possible on each side of the stream. A width of at least 50 ft on each side of the stream should be targeted as a minimum in areas. When riparian buffers are considered, more is always better. Buffers should be composed of native vegetation including trees, shrubs, herbaceous plants, and grasses. Figure 37 presents a representation of how buffers are designed.

Figure 37. Generic representation of riparian buffer zone.

Potential load reductions from use of these management practices on 50% of impacted buffers in all watersheds 99,603 lbs annually (WTM Model).

Stream Bank and Channel Stabilization

Several of the streams in the Lee Creek Watershed are exhibiting significant stream bank erosion at several locations. Stream banks should be stabilized in as many of the locations as possible and particularly in the critical areas that are easily accessible for the required heavy construction equipment. MFC-1, LLC-2, LC-2 and LC-1 should be the primary target of these efforts. Potential load reductions from bank stabilization alone exceed 100 lb sediment/foot of eroded bank restored. In addition to bank stabilization, root causes of stream bank instability should be evaluated in each reach and necessary channel restoration also be completed (i.e. installation of grade control, flow training and key habitat features, etc.).

Each stream bank and channel stabilization project comes with its own individual challenges and opportunities. Each stream stretch will need to be evaluated to determine what restoration techniques work best and meet the needs for sediment and nutrient reduction. Where possible, preference will be given to techniques that focus on bioengineering.

- Toe protection in conjunction with various vegetative protection measures (such as live stakes, live cribwalls, etc.)
- Stone armoring (such as the use of riprap, windrowing, etc.)
- Use of bioengineered materials including erosion control blankets, wattles, soil wraps, etc.
- Flexible mattresses (such as concrete block mattress, gabion mattress, wooded mattress, etc.)
- Engineered structures for grade control, energy dissipation and flow guidance, (cross veins, J-hooks, step pools, riffles, etc.).

The projects would generally utilize natural channel design techniques (Rosgen, 1996) and be supplemented with other guidance including *The WES Stream Investigation and Streambank Stabilization Handbook and USDA Engineering Field Handbook* "Chapter 16: Streambank and Shoreline Protection" as guidance for the projects in the watershed. Additional help may come from contract engineering companies who have additional experience with stream bank stabilization.

Potential load reductions from use of these management practices on 25-40% of highly eroded banks in key sub-watersheds 6,333,526 lbs annually (Calculated from site specific data).

Critical Area Conservation

Land conservation should become a priority. Where possible, attainment of land and/or establishment of conservation easements should be considered in areas critical to the stream (i.e. buffer zones, wetlands, etc.) and maintain these as green areas. The FSU has established a 300 foot buffer zone around Lee Creek Reservoir to protect its shoreline and provide a zone for storm water to infiltrate before it reaches the lake. A wildlife habitat management plan was developed and is utilized to oversee the 809 acre buffer zone. The buffer zone includes several habitat types that are protected including 476 acres of upland forest and 125 acres of bottomland forest. FSU has developed watershed management areas that are critical to the City's drinking water resources. In addition, much of the land adjacent to the lake is under conservation easements to protect the water resource. Other key elements that should be developed in tributaries in close proximity to the lake are provided in Table 30.

Technique	Description of Technique
Construction storm water protection plans	Require for all new developments to reduce site run-on and reduce sediment and other pollutants leaving the work site. Includes diversion ditches/berms, silt fences, temporary detention ponds, hay bales, mulch, grass covers, synthetic erosion control blankets, etc.
Natural area conservation	Minimize lot clearing to that essential for the home and a small yard, maintain as many trees as possible. Riparian vegetated buffers will be along all stream corridors.
Avoid septic system use	All homes should be connected to local sewers and wastewater treatment facilities when possible.

Table 30.	Key	/ management	measures to	o encourage	, develop	and manage	e.
-----------	-----	--------------	-------------	-------------	-----------	------------	----

Table 31 provides a ranking of the watershed management practices recommended as a result of the assessment. Each management action is ranked based on its ability to move the watershed towards attainment of the goals expressed.

Rank	Sub- watershed	Management Type	Management Action (Practice)
1	MFC-1	Restoration	Stream bank stabilization
2	LLC-2	Restoration	Stream bank stabilization
3	LC-2	Restoration	Stream bank stabilization
4	LC-1	Restoration	Stream bank stabilization
5	WC-1	BMP	Implementation of Pasture BMPs
6	LC-2	BMP	Implementation of Pasture BMPs
7	LLC-2	BMP	Implementation of Pasture BMPs
8	MFC-1	BMP	Hwy 59 corridor storm water run-off control
9	LC-2	BMP	Implementation of residential/commercial BMPs
10	WC-1	BMP	Implementation of residential/commercial BMPs
11	LC-1	BMP	Unpaved road maintenance and upgrades
12	LLC-2	BMP	Unpaved road maintenance and upgrades

Table 31.	Recommend watershed	management practices.
-----------	---------------------	-----------------------

6.3 Implementation Schedule

A watershed management plan should be a living and active document that serves as the guide to direct watershed management activities, including; implementation projects to achieve load reductions, monitoring water quality and biota to gauge goal attainment, continuing education efforts, etc. The plan should be updated at least every 5 years to ensure it is still relevant to the current conditions of the watershed. In order to help ensure all these action items are completed it is necessary to have a schedule listing the tasks that need to be accomplished. A summary of the action items that resulted from this WMP are provided in Table 32. The schedule provides ten years for actions to be accomplished that will result in a 10% reduction of sediment and phosphorus in the watershed.

Action Item	Target Date for completion	
Meet with stakeholder group to coordinate implementation projects	October 5, 2015	
Implement a pasture management education effort and invite all farmers in the watershed	March 1, 2016	
Meet with county judges and US Forest Service to discuss unpaved road maintenance	December 30, 2016	
Bank stabilization of 15% of eroded banks in MFC- 1 (moderate or worse rating)	December 30, 2018	
Bank stabilization of 20% of eroded banks LLC-2 (moderate or worse rating)	December 30, 2020	
See 20% of pastures in WC-1 and LLC-2 have management measures implemented.	August 15, 2021	
Bank stabilization of 10% of eroded banks in LC-2 (moderate or worse rating)	December 2022	
Install SW retrofits in 6 MFC-1, WC-1 and LC-2 locations	December 30, 2023	
Bank stabilization of 20% of eroded banks in LC-1	December 30, 2026	

Table 32. Implementation Schedule¹.

¹ Participation by landowners and funding are an unknown and could have a significant effect on the schedule and implementation success.

6.4 Interim Milestones

In order to monitor progress it is necessary to have measurable milestones that can be easily interpreted. The milestones that will be used for gauging progress on of this WMP are provided in Table 33.

Milestone	Measurement method		
Stakeholder group success	Meetings at least 2/year and attendance of at least 40% of group on average		
Pasture BMP meetings	Meeting occurred on schedule		
Unpaved road BMP meeting	Meeting occurred on schedule		
Bank stabilization (MFC-1)	Stabilization completed on schedule Length of stream completed as planned		
Future Watershed loading is monitored and assessed	FSU completes annual monitoring as planned, per the plan in Section 7.0		
First two years of monitoring complete and complied with historical data to set a baseline	Monitoring baseline established		
Monitoring shows TSS and TP loading is stable or decreasing	Data analysis (per Section 7.0) of first three-year monitoring cycle (2017-2019)		
Pasture management practice implemented	Completed on schedule and attaining percentage goals		
SW retrofits installed	Completed on schedule and attaining percentage goals		
WMP reviewed and updated every five years	Plan review is completed in 2020 and needed updates included		
Bank stabilization in (LLC-2)	Stabilization completed on schedule with length of stream completed as planned		

Success will be achieved if the above tasks are completed according to schedule. Future success will be measured by number of implementation projects that are completed. In addition, the FSU will continue their watershed monitoring program and continue to evaluate sediment and nutrient loading to Lee Creek Reservoir.

6.5 Adaptive Management

As with any undertaking of this magnitude, obstacles will arise, and plans change. Therefore, every effort will be made to make this management plan dynamic, so that it can be easily adapted and adjusted to the needs of the watershed to benefit water quality, aesthetics, biotic communities and the public.

Every five years the plan will be reviewed to evaluate effectiveness of:

- 1. BMPs/Management practices,
- 2. Monitoring of loading,
- 3. Interim milestone completion, and
- 4. Education Outreach

Should any one of these components be found to be ineffective or insufficient then the plan will be revised accordingly to improve that component. After every 10 years the WMP will be updated. The update will include goals, revisions to key components that have changed over time as well as revisions needed to improve accomplishment of its goals.

7.0 Water Quality Targets (Success Criteria) and Monitoring

FSU will continue its current monitoring program supplemented by additional grab sampling in key sub-watersheds, where appropriate. The FSU currently monitors water quality through sample collection, physio-chemical measurement and bioassessment. See Section 3.1.1, 3.2 and 3.5 for a summary of the FSU monitoring program. The new gauges that were installed in key sub-watersheds as part of this study will be used in the future to calculate loading in those sub-watersheds. The addition of the new gauges, with the three existing USGS gauge stations in the watershed, should allow fairly accurate loading to be calculated for the entire Lee Creek watershed. FSU will use loading data (TSS, TP) collected in the future to compare to the loading data collected historically in their program and data collected during this watershed assessment. Load reductions or increases will be determined using the loading data, control charts and trend analysis. FSU will use control charts and trend analysis to gauge if the watershed loading is responding positively or negatively to load reduction efforts. A predictive trend line will be used to quantify load reductions in key sub-watersheds. Bioassessment data will also be used as it has been used historically and is depicted in this WMP (see Section 3.5). Should the bioassessment metrics and stream condition indices vary from the historical norms (as observed in control charts) then it will be evidence of either positive affects or negative within the watershed. If the monitoring results, both water and bioassessment, indicate that loading has not been decreasing on three consecutive years then additional monitoring will be completed to assess the problem and determine if loading had remained constant or if new load sources could be to blame. The first two years of WMP implementation (2015 and 2016) will not be assessed in the first three year assessment cycle. Those years will be assumed to be "building" years for the database. After the first five years of post WMP monitoring the assessment of loading status will be completed for the most recent three years of data (2017-2019). This cycle of monitoring and evaluation will then continue forward until what (three year cycles) time as revisions needed.

BMP effectiveness will be monitored in two of three ways:

1. Implementation of BMPs on the ground, and

- 2. Modeling of reductions from BMPs implemented, or
- 3. Monitoring of runoff above and below BMPs.

8.0 Public Involvement, Education and Stakeholders

The FSU is active in educating the public concerning relevant environmental and watershed issues. The City currently conducts a Citizens Academy which provides facility tours and educates public groups on water related issues. Fort Smith's Environmental Management Group also serves as a science fair resource for the Fort Smith School District and other nearby districts, providing project guidance and science fair judges.

As with any major public undertaking the support of the general public and key local personalities and stakeholders is critical. The stakeholder group, should be composed of key individuals, stakeholders (those with property in the watershed, and/or those who are affected by management decisions in the watershed) and local partners who would review recommendations for management, help determine what management measures would be adopted, and help implement the plan. Advantages of utilizing such groups are multifaceted, they include; a broader perspective on the issues, a higher level of public comfort with decisions, and a better platform for informing the public, to mention a few. Watershed advisory groups illicit a spirit of sharing and cooperation that can energize the management process. Historically, watershed management has been more successful when such advisory groups have been involved in the process.

The FSU and other stakeholder groups have taken large steps towards protecting and enhancing the Lee Creek watershed and in educating the public about drinking water quality. The continued development of a strategy to educate the public about Lee Creek watershed management is a priority. The general public must begin to understand ways their activities affect waters in the watershed. They must also begin to see the ways the waterways enhances their lives so they begin to value it more. This effort could include actions such as public meetings, informational brochures, workshops, field trips and information sessions. Several stakeholder groups continue to host Lee Creek clean-ups or restoration days, where the public, including students, become engaged in watershed management activities.

Educational Outreach

A public and stakeholder meeting was held for the Lee Creek Watershed on Tuesday June 29th, 2014. The meeting was held to increase awareness and knowledge of the efforts being made to improve and preserve the Lee Creek Watershed across the four (4) counties in Arkansas and Oklahoma. The meeting was advertised by posting flyers, sending mail-outs, e-mailing announcements to organizations/agencies, announcements on the radio and local news stations. For those who are interested and could not attend, a specific e-mail address (LeeCreekWMP@FortSmithAR.gov) was set-up and is still currently operational for those wanting more information or to participate in the development and execution of the watershed management plan. The meeting was a success as there were 27 people in attendance for the meeting with 12 stakeholders signing on to continue helping with the management of Lee Creek watershed. Stakeholders include: U.S. Forest Service, Arkansas Master Naturalist, Arkansas Canoe Club, Oklahoma Water Resource Board, The Nature Conservancy, Arkansas Department of Health, Oklahoma Scenic Rivers Commission, and Oklahoma Conservation Commission. An informational brochure was prepared and given to everyone in attendance that included a summary of the Phase 1 Draft WMP and key points of the meeting and contact information. Brochures will be left at key locations in the watershed to encourage continued education.

Goals of the meeting were to identify water quality concerns in the watershed, increase education and involvement, coordinate efforts with the public and develop a stakeholder holder group. The initial draft of watershed management plan was covered in the meeting explaining data that have been collected in the past. Citizens and stakeholders gave feedback on the plan and suggestions concerning major sources of pollutants in the watershed. The main concern noted was that unpaved roads have been observed to be big transporters of sediment. Unpaved roads could be contributing to the amount of TSS measured in water quality samples collected from the watershed. For this final version of the WMP unpaved roads and sediment loading from the roads were estimated and incorporated into the plan as a key impact. Stakeholders were given the opportunity to review information in the draft WMP and will be sent future drafts of the plan for review until the watershed management plan is finalized. Key stakeholders involved in this process include the Oklahoma Water Resource Board, the Oklahoma Conservation Commission, the Arkansas Natural Resources Commission and the Arkansas Department of Environmental Quality.

Stakeholder Involvement

As stated earlier, stakeholders gave feedback on the plan and suggestions concerning sources of pollutants in the watershed. This information was evaluated and used to set priorities in the action plan. The final draft of the watershed management plan was sent via e-mail to all the stakeholders for review and comment prior to it being submitted for acceptance. Future proposed revisions of the watershed management plan and schedules will be sent to all stakeholders.

Stakeholders have already been involved in scheduling clean-up events and discussions about improvements to the watershed.

Continuing Education

Fort Smith Utility is working with schools to educate students on the importance of watersheds and watershed management. These educational sessions include allowing students to collect macroinvertebrates from a small stream located inside park under the direction of the FSU biologists, collection of fish, a discussion on birds and frogs. This is all tied into a closing lesson on the impact of humans on the health of the watershed, and the possible consequences if the watershed is not protected through conservation and BMPs such as not littering, properly disposing of trash and chemicals, etc.

FSU currently hosts a website for the Lee Creek Watershed where information on the watershed management plan as well as the plan itself is accessible. FSU continues to work with stakeholders to inform, educate, and involve new stakeholders and the public.

- FSU utilizes the EPA document "Getting in Step: Engaging Stakeholders in Your Watershed" as a guidance and source of information on how best to reach out to current and future stakeholders.
- The EPA Nonpoint Source program has created a nonpoint source outreach tool box that will be reviewed and used to increase awareness (http://www.epa.gov/nps/toolbox/). Relevant information and material from the Tool Box will be adapted for stakeholders in the Lee Creek Watershed.
- Annually an FSU representative discusses the importance of watersheds on a local talkradio station.

- Printed flyers, fact sheets, booklets and educational meetings will be used to share information and educate the public on watershed management, watershed concerns, and the use of different BMPs and their maintenance.
- Ecosystem services are the benefits people obtain from nature. Examples include freshwater, timber, water purification, soil regeneration, flood control, pollination, and similar services, many of which are considered "free." The EPA Ecosystem Services Research Program and the USDA Office of Ecosystem Services are developing approaches for quantifying the economic value of some of the non-market services (e.g., waste assimilation, water purification, soil development). Creating a better understanding among stakeholders of the monetary value of these "free" services, as well as potential markets will help inform them for better decisions.

9.0 Technical and Financial Assistance

The projected costs to accomplish a 10% reduction in sediment and phosphorus in the Lee Creek watershed is summarized in the table below. Phosphorous reduction is closely correlated to sediment reduction and is assumed to be reduced proportional to TSS reduction.

Management measure	Sediment Reduced Ibs/unit area	lbs TSS Reduced	Cost (\$)	Costs/lb Reduced
Stream restoration (bank stabilization)	30-320 lb/ft	6,333,526	2,988,500	\$0.47
Riparian buffer restoration	3.4 lb/ft	99,603	26,880	\$0.27
Unpaved road improvement	0.55 lb/ft	457,337	1,375,500	\$3.01
Storm water retrofits ¹	86.1 lb/ac	29,430	1,420,000	\$14.27
Agricultural BMPs (Pastures) ²	29.9 lb/ac	231,557	1,595,676	\$6.89
Education/Public Outreach			40,000	Every 3 yrs

¹Storm water retrofits are BMPs designed to be implemented in urban, suburban and commercial/industrial areas. They include low-impact development features.

²These costs are for BMP implementation in either cattle pastures or hay fields.

A vast array of federal funding opportunities exists for developing and implementing effective watershed management activities. A number of incentives and grants are available for land owners to implement agricultural BMPs; and grants are available to communities to install storm water treatment practices and replant riparian areas. Some grants will be more easily obtained by non-profit or community groups, such as a "Friends of Lee Creek" (possible steering committee name) discussed previously. The majority of grant applications cycle on an annual basis with applications due the same time each year. Many of the grants listed in Table 38 require matching funds from the applicant. Awards are usually distributed within a few months

of the application deadline. Many grants require recommendations by the Governor or a state/federal agency of the respective state in which a project will be completed. Grants highlighted in yellow are those which best fit the overall goals of the Lee Creek assessment findings and recommendations. It is anticipated that approximately 1/3 of the funding will come from a combination of these programs. The remainder of the funding will come from the City of Fort Smith, local land owners and investors.

Table 34. Private/Match Funding Entities for Watershed Management.
Entity
Adair County Government (Roads)
Arkansas Canoe Club
Arkansas Master Nationalist
City of Fort Smith
Crawford County Government (Roads)
Local Land Owners
Sequoyah County Government (Roads)

Grant Name	Source	Type/Purpose
Conservation Reserve Program (CRP)	USDA	Agricultural BMPs
Cooperative Forestry Assistance	US Forest Service	Preservation of forested land
Environmental Education Grants	EPA	Community education
Environmental Quality Incentives Program (EQIP)	USDA (NRCS)	Agricultural BMPs
Five Star Restoration Matching Grants Program	EPA and National Fish and Wildlife Foundation	Restoration of riparian and aquatic habitats
Flood Mitigation Assistance Program	FEMA	Flood mitigation
National Fish and Wildlife Service General Matching Grants	National Fish and Wildlife Foundation	Fish, wildlife, habitat conservation
Native Plant Conservation Initiative	National Fish and Wildlife Foundation	Protect/enhance/restore native plant communities
Non-point Source Implementation Grants (319 Program)	USDA (NRCS) EPA (ANRC or OCC)	Non-point source reduction and watershed protection
Targeted Watershed Grants	EPA	Watershed protection and management
Urban and Community Forestry Challenge Cost- Share Grants	US Forest Service	Forest conservation and restoration in urban settings
Water Quality Cooperative Agreements	EPA	Watershed protection and pollution prevention
Watershed Processes and Water Resources Program	Cooperative State Research, Education and Extension Service	Watershed management
Watershed Protection and Flood Protection Program	USDA (NRCS)	Watershed protection and management
Conservation Innovation Grants	USDA (NRCS)	Conservation related to agriculture

Table 35.	Funding	Opportunities	for Watershed	Management.
		• • • • • • • • • • • • • • • • • • • •		in a goine in

10.0 References Cited

AWWA, 2007. Source Water Protection. ANSI/AWWA G300-07 Standard. AWWA, Denver, CO.

Allan, David 1994. Stream ecology: Structure and function of running waters. Chapman and Hall, Boundary Row, London.

Barbour, M.T. 1999. Rapid Bioassessment Protocols for use in Wadeable Streams and Rivers: Periphyton, Benthic Macroinvertebrates, and Fish. USEPA. EPA 841-B-99-002.

Bloser, S.M. and Sheets B.E., 2012. Sediment Production from Unpaved Oil Well Access Roads in the Alleghey National Forest. Pennsylvania State University, University Park, PA.

Boulton, Andrew (2003). Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. *Freshwater Biology* 48; 1173-1185.

Bowles, D.E. et.al. 2007. Protocol for Monitoring Aquatic Invertebrates at Ozark National Scenic Riverways, Missouri, and Buffalo National River, Arkansas. National Park Service Report NPS/HTLN/NRR-2007/009.

Bunn, Stuart and Angela Arthington (2002). Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. *Environmental Management* 43; 492-507.

Carlson, Robert 1977. A trophic state index for lakes. *Limnology and Oceanography*. 22; 361-369.

Claytor, R.A. and T.R. Schueler. 1996. Design of Stormwater Filtering Systems. Center for Watershed Protection. Ellicott City, MD.

Davis, J.V. et al. 1995. Water Quality Assessment of the Ozark Plateaus Study Unit, Arkansas, Kansas, Missouri, and Oklahoma—Analysis of Information on Nutrients, Suspended Sediment, and Suspended Solids, 1970-92. USGS. Little Rock, AR.

Evans, B.M. 2001. BMP Pollution Reduction Guidance Document. Bureau of Watershed Conservation and PDEP, PA.

Kitchell, A. and T. Schueler. 2004. Unified Stream Assessment: A Users Manual. Center for Watershed Protection. Ellicott City, MD.

MDEP, 2001. Unpaved Roads BMP Manual. MDEP and USEPA Project 98-06/319.

Merritt, R.W. 1996. An Introduction to the Aquatic Insects of North America. Kendall/Hunt Publishing Co. Dubuque, IA.

Plafkin. J.L. 1989. Rapid Bioassessment for use Protocols for use in Wadeable Streams and Rivers: Benthic Macroinvertebrates and Fish. USEPA. EPA 440-4-89-001.

Poff, LeRoy, David Allan, Mark Bain, James Karr, Karen Prestegaard, Brian Ritcher, Richard Spraks, and Jullie Stromberg (1997). The natural flow regime. *Bioscience* 47; 769-784.

Rosgen, D. 1996. Applied River Morphology. Wildland Hydrology. Pagosa Springs, CO.

RTI International. 2012. Nutrient Credit Trading for the Chesapeake Bay. Chesapeake Bay Commission.

Schueler, T.R. 2000. The Practice of Watershed Protection. Center for Watershed Protection. Ellicott City, MD.

USEPA. 2003. National Management Measures for the Control of Nonpoint Pollution from Agriculture. USEPA, Office of Water. Washington D.C.

USEPA. 2005. Handbook for Developing Watershed Plans to Restore and Protect Our Waters. EPA 841-B-05-005. USEPA, Office of Water, Washington D.C.

USEPA. 2013. Getting in Step: Engaging Stakeholders in Your Watershed. EPA 841-B-11-001. USEPA, Office of Water, Washington D.C.

Wieland R. 2009. Cost Efficiencies for Nutrient Reduction Practices in Maryland. NOAA and MDNR.

Appendix A FSU Water Quality Data

	- OrthoP-	# 0.013	# 0.015	< 0,013	# 0.021	< 0.016	# 0,017	< 0.020	< 0.020	< 0.020	< 0.020	< 0.010	< 0,010	< 0.007	< 0.007	< 0.007	E00'0 >	< 0.003	< 0.003	< 0.003	< 0.003		
	-RON- NO2-N	# 0.10	# 0.17	# 0.04	# 0.04	# 0.10	# 0.06	# 0.05	# 0.14	# 0.46	< 0.10	# 0.65		0.09	0.41	: 0.05	0.60	0.34	0.06	0.27	0.11		
	Sulfate, mg/L	621	4 56	11.63	5.23	6.33 1	4.00 3	5.01	9.70	8.40	6.00	9.30				Č							
Nitrite	as N, mg/L	0000	0.00	0,01	0.01	0,01	0.01	0.01	0.05	0,05	0.05	0,05	0.01										
	Nitrite, mg/L	0.01 <	0.01 <	0.02 <	0.02 <	0.03 <	0.03 <	0.03 <	0.16 <	0.16 <	0.16 <	0.16 <	0.02 <										
Nitrate	as N, mg/L	0.10 <	0.17 <	0,03 <	0.04 <	0,10 <	0.05 <	0.04 <	> 60.0	0.41 <	0.05 <	0.60 <	v										
	Nitrate, mg/L	0.44	0.76	0.13	0.16	0.42	0.24	0.20	0 38	1.82	0.22 <	2,66											
	Chloride, mg/L	2.37	2.27	12.16	2,14	2.81	1.95	2,00	4.70	9,20	2.70 <	3.30		4.70	9.20	2.70	3,30	5,50	3.01	7.14	3,06		
	osphate, i mg/L	0,039	0.045	0,040	0.064	0.050	0.053	0.060	0.061	0.061	0.061	0.031	0.031	02	02	02	01	10	10	01	01		
	Orthophc					5							24	0.0	00	0.0	0.6	0.0	0,0	0.0	0.0		
Total	Nitrogen, mg/L			*		*		v	0,23 <	0.50 <	0.07 <	NA «	0.38 <	v	~	v	Y	v	~	v	v		
	TOC, mg/L	3 03	0.50	1.00	0.64	1.37	1.37	1.73	1.36	1.05	2.13	1.00	1.26	1.36	1,05	2,13	1,00	1,26	1.12	0,74	0,91		
Total	sphorous, mg/L	0:030	> 0E0.0	0.040	0E0 0	060 0	0 060	0.020	0.020	0.020	0.060	0.020	0.020	0.02	0.02	0.06	0.02	0.02	0.02	0.02	0.04		
	al Hardness, Phoe g/L as CaCO ₃	34.00 <	44 00 <	36.00	44,00 <	30.00	50,00	34,00 <	24.00	26.00 <	20.00	20,00 <	20,00 <		•		*	v		v			
	al Alkalinity, Tot g/Las CaCO ₃ m	30.00	40.00	16.00	40.00	24,00	52.00	30.00	16.00	12,00	16.00	12,00	12,00										
	rurbidity, Tot NTU m								2.10	12 00	8.50	3,00	3,60										
	TSS, mg/L	5.00	5.00	5,00	5,00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5 00	5 00	5 00	5.00	5.00	5 00	5,00	5,00	5.00		
	E. coli, Colony/100 mL	3,00 <	1.00 <	1.00 <	5,20 <	1.00 <	1.00 <	9.80 <	6.30 <	32.70 <	23.80 <	4.10 <	v	v	×	~	~	v	v	v	v		
otal Coliform.	olony/100 mL	2419.60	980 40	387,30	2419,60	107.60	1413,60 <	1732.90	1203.30	920.80	1732.90	461,10											
Date	ollected	19/2002 >	11/2002	15/2003	E00Z/0E,	25/2004	'24/2004	10/2005	1/7/2010	1102/21,	1102/61,	/13/2011	23/2012	0102/1/;	11/2011	1102/61,	/13/2011	23/2012	26/2012	/7/2013	30/2013		
	Type	b 6	4 L	b 1/	b 6/	b 2/	b 8/	b 5/	b 11	b 2/	b 5/	b 12,	b 2/	b 12	b 2/	b 5/	b 12,	b 2/	b 4/	b 2,	b 4/		
Samole	Number	kburn Cr.	kburn Cr	kburn Cr.																			
Control	Number	02-05052 Blac	02-05666 Blac	03-00486 Blac	03-05261 Blac	04-01571 Blac	04-06653 Blac	05-02850 Blac	10-07450 Blac	11-00959 Blac	11-02814 Blac	11-07033 Blac	12-01187 Blac	10-07450 Blac	11-00959 Blac	11-02814 Blac	11-07033 Blac	12-01187 Blac	12-02508 Blac	13-00810 Blac	13-02477 Blac		

Blackburn Creek	Total Coliform,	E. coli,	TSS,	Turbidity,	Total Alkalinity,	Total Hardness,	Phoenhorous	TOC,	Nitrogen	Orthophosphate,	Chloride,	Nitrate,	Nitrate	Nitrite,	Nitrite	Sulfate,	z	-60
Baseline summary statistics	Colony/100 mL	Colony/100 mL	mg/L	NTU	mg/L as CaCO ₃	mg/L as CaCO ₃	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	as N,	mg/L	as N,	mg/L	Ň	Z-N
Average	1252.65	8.08	5.00	5,84	25 00	31.83	0:030	1,30	0.29	0,035	4,43	0.67	0.15	0.07	0.02	6,94		.20
Min	107.60	1,00	5,00	2.10	12.00	20.00	0.020	0,50	0.07	0,010	1.95	0.13	0.03	0.01	0.00	4,00	¢	8
Max	2419,60	32.70	5,00	12.00	52.00	50.00	0.060	3.03	0.50	0,064	12,16	2.66	0.60	0.16	0.05	11,63	Ö	65
Median	1203,30	4 10	5.00	3.60	20.00	32,00	0.020	1,19	0:30	0,035	3,06	0.38	60"0	0.03	0.01	6.21	Ő	10
SD	780,00	10.53	00'0	4.25	13 42	10,32	0.015	0,59	0.19	0.021	2,94	0.81	0.18	0.07	0.02	2,45	Ö	20
75th %tile	1732.90	8.05	5.00	8.50	32.50	38.00	0.033	1.37	0.41	0,055	5.10	0.60	0.14	0,16	0.05	8,85	0	31
Count	11.00	11.00	20.00	5.00	12,00	12,00	20,000	20.00	4.00	20.000	19,00	11.00	11.00	12.00	12.00	11 00	19.1	8
90th %tile	2419 60	23.80	5.00	10.60	40.00	44.00	0.060	2.13	0.46	0.061	9.20	1.82	0.41	0,16	0.05	9.70	0.4	5
Geomean							0.027											

Control	Sample Number	Type	Date	Total Californ.	Ecol	THE.	Turbidity, Fot	i Alkalinity, Tot	I Hordness, Phe	Total sohorom.	TOC.	Total Nitrotem Ort	hophosphate.	Chloride.	Witrate.	arean	Nitrite.	antitum at M.	Suffate.	-EON	Ortho-
Unnec			CONCILED	THE OWNER AND	Colory/100 mL	me/L	MU M	UL IN CACO, MY	/Les Caco,	mglt	mpfl	How	-	1/Jun	ma/L	T/But	melt	malt	that.	NO2-N	P - P
02-03050	Buckhorn Cr	4	6/19/2002	1553.10 +	100 4	9:00		14.00	14 00 9t	0 030	244		0.030	1 32 4	0.07 <	0.02 <	0.01. 4	0010	3.03 4	0.02 +	0.01
+3350-20-	Buchom Cr	4	2002/11/1	920.00	3 00 t	2005		28.00	00 00	* 000 a	0.50		0.055	12	020	- 100	D.01 4	000	. 422	0.07	0.02
03-00484	Buckhorn Cr		1/15/2003	410,60	A 10 4	5,000		12.00	14.00 4	0000	150		0.064	1.60 *	> 500	300 ×	0.02 4	100	+ 20.4	0.02	0.02
03-05259	Buccham Cr		£007/0E/9	1203.30	38.90 ×	5.00		14.00	10.00 ×	0030	2.44	*	0000	* £5'0	> 500	> 100	+ 10/0	100	3.10 ×	0.02 +	0.01
64-015555	Placehorn C	4	2/25/2004	NON.	27.10 ×	85		12.00	12.00	0.020	560		0,050	151	800	0.02 e	> 600	100	- 291	• 50.0	0.02
01-06651	Buckhorn Cr		8/24/2004 >	2419,60	2.00 ×	200		24.00	20.00	06010	136		0.050	151	0.67	0.15 <	* E0'0	100	276.4	0.16 +	D.02
10-0244	Buckhorn Cr		\$002/0L/S	1046,20	* OF IE	3.8		10.00	14,00 ×	0.020	1.86	*	0.060	131	110	> E0.0	- 20'D +	100	325 .	0.03 +	0.02
00-00754	Bookhom Grat-		2/3/2006		*	5.00		14,00	00.92	0.039	> 1F2	100 +	0:060	108	9013	+ 100	> 10'0.	10.0	1.61 .	0.02 <	0.02
06-01599	BHC Grab		3/15/2006		¥	2005		10.00	16.00	0900	* 121	* 50'0	0,060	> 161	- 100	> 100	0.03 ×	10.5	* 15.4	0.02 +	0.02
12210-90	Buckhorn Grab		3/22/2006		Ψ.	2005		0.00	12,00	0.660	3,45	× 500	090'0	150.4	0.05 ×	A. 10.0	> 000	10.0	- 351	0.02 ×	0.02
27710-30	BH GPAE		527200			200		12.00	14.00	0.030	127	- 900	0.063	- 141	. 50.0	- 10:0-	+ 60.0	too	1 213	0.02 <	0.02
09-070-90	Bucknorn Grab		2002/51/5		¥	2005			12.00 -	0.020	112	000	0,070	ž	100	0.02 +	> E0.0	10.0	3.36 #	0.03	0.02
06-03792	BHC Grab		6002008		÷	200		14.00	20.00	0.050	1.03 +	+ 500	0.040	144 0	0.02 ×	+ 000	a 10,0	000	437 ×	0.01 ×	0.01
06-00158	Buchom On Grad		9002/92/6			625		14.00	18.00	0.090	110	900	1400	1.31 <	> 100	0.01 4	- 10 D	000	. 121	0.01	0.02
06-07760	Bucehoon Grab		12/6/2006		×	2.00		00.9	10.00	0.070	0.86.4	* 50 d	0,040	WE T	500	0.01 ×	> 10.0	0.00	345 .	0.01 ×	0.01
107-0004	duction Grab	ø	1000/2/1		*	200		800	12.00	0500	14	0,10 +	0,540	163	110	0.02 +	= 10.0	000	- 81	0.03 <	0.01
12400-10	Receiptorn Grate	0	1/10/2002			10.00		8.+	10.00	0.010	328	- 010	0.040	(2)	0.21	1 500	* 10'C	8.0	E 45 .	▶ 50.0	0.01
90010-20	Bucktom Grab		2115/2007		1	2.00		22.00	14 100	01010	1.24	- 100	0.040	112	120	0.05 4	> 10.0	000	- 10 F	D.05 ×	0.01
10-07333	Buckhorn Ci		12/2/7010	1411.60	1 052	2015	24.00	12.00	12.00	0.090	181	0 12 +	1900	140	50	0,13 4	0.16 -	0.05	1 0012	0.18 *	0.02
10-07333	Buckhorn O	0	0100/0/07		*	200				0.09	1.81		0.02	160						E1.0	
11-07960	Buckhom Ci		1102/25/2	255.40	2 45 4	500	14 80	800	34.00 e	0,020	14	> 出口	THOR	140	81	- 3E 0	D.46.4	0.05	4.62	0.43 <	0 02
11-00960	Buckhorn Cr.		1102/27/2			58				20-0	칏		100	08.1						0 36	
51120-11	Gent		4/14/2011		*	20.5	0011	10.00	10.00	0100	202	× 17.5	1900	140	150	0.12 -	0.15 <	500	\$ 0ES	017 <	0 02
21620-11	Buckham C		2/19/2011	097025	A.10.4	005	15.00	10.00	12.00 ×	01010	2.38	0.16 4	190.0	1.40 <	> 72 0	× 50'0	P. 10.16	50.0	3.40 +	0.10 <	0 02
11-02815	Buchers Cr.		1101/61/5			2005			*	0.02	123	v	0.07	140					*	0.05	
14-06751	Gran		11/28/2011		4.	500	02.6	8.00	10/02	0,060	920	> 250	THO'C	01/1	123	D.159 4	0.02 c	10/0	1 001	0.40 <	0 01
11-07068	Buckhorn Cr		1102/91/21	290.50	4.10 4	805	6.00	B.CO.	10.00	0,030	1.10	NN	1EO/U	160	1.85	D.42 +	0.46.4	50.0	* 06X	047 #	0 01
11-0/06B	Buckhom Cr.	4	12/14/2011		*	200				0.03	110		10.0	160						0 42	
12-00710	Grab		2102/15/3		.*	200	QR-2	600	10.00	0,060	691	0.46 ~	190.0	1.40	1.72	REO.	0.16 4	0.05	100 .	0.44 <	0 02
12-01165	Buckhorn C		2105/22/2	126.00	100		650	8.00	10.00 4	0000	104	0.35	6110			•	0.02 <	100	•	n	0 04
12-01166	Buchtom Cr.		2105/2012		*.	20%			¥	20.02	No.		100	02.1						0 32	
12-02096	Buckhom Cr.	•	4/25/2012		¥	205			*	003	TET.	*	100	145						0.06	
12-06185	Buchhorn Cr.		2107/65/01			85			*	20.0	1.61	*	100	1:50						010	
13-00743	Buckhorn Cr.		FLOE/S/Z			85				0.03	0.57		0.01	1.75						0 15	
13-02504	Buckhom Cr.	4	5/1/2013			805				200	051	v	100	81					1	100	
	Buckhorn SW Comp	•	2/2/2006			31.38		11.50	22 50	0.038	\$ 22.4	3.00	090 0	1 55	150	800	600	100	1.121	010 #	0.02
	Buchen SW Comp	•	THAT OOD			550		24.50	22.50	0.060	3.74	800	0.060	142	000	10'0	0.03	10'0	* 10 *	0 02 #	0.02
	Buckhom SW Comp	•	3/21/2000			22		0411	00151	OFF O	255	013	0900	1.83	DOE	100	20.03	100	4 01	# 200	0.02
	Buckhom SW Comp	•	2/1/2008			12		12.50	17.80	1210	765	102	0.214	1.76	0.16	100	0.03	100	- 181	0.05	0.07
	BUCKNOW SW COMP	•	CONTRACTOR OF			21		100	202	1000	LOE	820	0000	E :		a li	510	9		0.08	0.02
	Duction 3W Comp		9002200			14.42		81	201	Ser o	121	120	01010	148	0.13	0.03	100	80	2.52	• E0.0	10.0
	promon bir carp	•	boost and			and a		201	8 1	0000	5	4	0.084	1	110	No.	2010		- 202	0.04	0.027
	CUCH SAV LONG	• •	Contractor of the second			13.50		8.		inter a	16.7	21.0	Diet of	11	0 18	0.0	100	010		0.02	E10.0
	Buchtom 5W Lomb	•	Thread P			22		100	00.01	0010	14	410	0000		0.14	100	100	8	- 147	E0.0	ELO.0
	Buchhom SW Comp	•	1022511			1115		250	00.41	1010	3.47	0.16	0000	8	0.18	50	100	000	119 .	0.04	0.013
	Buckhom SW Comp	•	2014/2007			1100	-	#30	15:50	0.123	5	0.14	0000	8	630	0.06	10'0	000	165 .	0.07	Eto.o
	Succhorn-SW-Comp		4/11/2012			515	1150	11:00	12,000	0110	2.28	No.	0133	140	0.14	0.17	510	100	1 121	0.22 +	0.043
	Buckhom-SW Comp.		11/21/2011			17/00	33.25	350	1100	021.0	148	65.0	160.0	P.	EET	DED	0.02	100	1 00 1	• IE.0	0.010
	Buckhom GW comp	-	1/25/2011			57%	1151	2.00	80.5	SELD	5	170	190'0	121	Z,	0.35	0.16	0.05	1.83 .	0.40	0.020
	Buckhorn-liw comp.		E102/62/1			14.75				2110.0	654		100	1,67075					0	42875	
	Bucknom-SW come	•	\$102/12/5			555				0.12	えて		0.01	1127275					0	17125	
	Buckhorn-SW ramp		6/1/2013			11.75				10.0	141		100	1.21						0.13	

Buckhorn Creck Baseline summary statistics	Total Coliform, Colony/100 mL	E. coll, Colony/100 mL	TSS, mg/L	Turbidity, NTU	Total Alkalinity, mg/L as CaCO ₁	Total Hardness, mg/L as CaCO ₃	Total Phosphorous, mg L	TOC, mg/L	Total Nibrogen. mgit.	Orthophosphate, mg/L	Chloride, mg/L	Nitrate, mg/L	Nibrate as N, med L	Nitrite, mg/L	Nitrite as N, mt/A	Sulfate, mg/L	ND3- NO2-N	Drtho P-P
AVERAGE	915 88	1015	112	11.25	12.00	福井	0.054	招	0.24	0.044	69'1	0.42	0.10	0.05	200	192	110	100
Min	186 00	1 00	5 00	6 00	4 00	10 00	0 020	0 26	0 05	0 010	E6 0	10.0	0 00	100	0 00	2 75	10 O	0.010
Max	2419 60	36.90	10 00	18 00	28.00	DO DE	0 460	2 44	1 00	0 123	2 08	1 86	0 42	D 16	20 D	4 61	047	0.04
Median	920 80	4 10	5 00	11 60	10 00	13 00	0 030	1 34	0 11	0 040	1 48	0 11	0 02	E0 0	0 01	3 53	0.05	0.01
20	669 20	12 55	0.88	4 55	5 77	5 83	0 075	0.53	0 26	0.023	0 23	0 62	0 14	0 06	0 02	051	0 15	000
72115 %till	1255 88	06 6	5 00	14 25	14 00	16 00	0 060	1 70	0 32	0.060	1 60	0 53	0 12	0 03	10 0	3.90	0 17	0.02
Copiet	12 00	12 00	34 00	8 00	25 00	26 00	35 000	35 00	18 00	35 000	34 00	25 00	25 00	26 00	26 00	25 00	34 00	26.00
SOUT SALLE	1539 15	29 88	2 00	15 90	20 40	23 00	060 0	2 20	0.54	0.061	1 79	171	66.0	D 16	0 05	4 36	041	0.02
Georgen	(0.036									1		1
Buckhorn Creek Storm water	Total Coliform, Colony/100 mL	E coll, Colony/100 mL	TSS, mg/L	Turbidity, NTU	Total Alkallnfty, mg/L as CaCO ₃	Total Hardness, mg/L as CaCO ₃	Total Phosphorous, mg/L	TOC, mg/L	Total Nitrogen.	Orthophosphate, mg/L	Chloride, mg/L	Nitrate, mg/L	Nitrate as N,	Nitrite, mg/L	Nitrite #1 N.	Sulfate, mg/L	NO3- NO2-N	Ortho P-P
Avirant	IO/NIG#	10/AIG#	24 01	48.76	11 11	15 43	0 116	346	0.40	0 058	137	6E 0	60.0	0.05	0.02	3 43	0.13	0.0
Min	00 0	0 00	5 50	33 25	5 50	00 6	850 0	1 48	0.08	010 0	1 06	0.05	10 0	10 0	0 00	2 83	0.02	D.G.
Mak	000	00 0	71 25	71 50	24 50	22 50	0 230	5 77	1 02	0 214	1 83	154	0 35	0 16	0 05	4 49	0.43	0.0
Median	INUN#	INUN#	17 00	41 53	10 25	14.50	0 105	3.07	0 23	0 040	1 27	0 17	0 04	0.02	10 0	3 39	0.07	00
2	#DIV/0	#DIV/01	17 89	20 12	5 22	4 54	0 051	1 35	0 34	0 020	0 23	0 47	11 0	0 06	0 02	0 44	0.13	00
7541 % Ille	IWON#	BNUM!	29 67	56 51	13 00	19 75	0 123	4.33	0 56	0 060	1 48	0 37	0 08	0.03	10 0	3 61	0.17	00
Count	000	00.0	17 00	3 00	14 00	14.00	17 000	17 00	14 00	17 000	17 00	14 00	14 00	14 00	14 00	14.00	17.00	24.0
WORLD SLEDT	1101126	INCOMP.	20.05	46.63	36.94	100 11	10404	R.AN	2000	- PARTER	-	22		10 mm	and			200

Control Sam	ple Number	Type	Date	Total Coliform,	E. coll,	£	S, Turb	idity, Total Alkalini	ity, Total Hardr	Tess, Phosi	Total horous.		Total Nitrogen, Ort	hophosphate,	Chloride.	Nitrate.	Nitrate as N.	Nkrite	Nitri Nitri	te N. Sulfint	N-EON	ź	
Inumar			Collected	THE OUT / ALLOND	Colony/100 mL	m	V	NTU mg/Las CaC	O, me/Las Q	100	mg/L TOC	mg/L	mg/l.	melt	me/L	Man	1/Sm	me	Ju I	A m	N N	Ortho-I	d-d-
02-05051 Cove	5		619/2002 >	2419.60	14 80	× 50	8	35	6 28	600		391	v	DED D	2 08	0.26	0.06	× 00	1 × 0.0	0 617	.0.06	< 0.010	10
02-05665 Cove	.cr	.0	7/11/2002 >	2419 60	19 90	< 50	0	106	00 10	8 00	*	0.50	N.	DED O	2 19	0.33	0.07	00	1 0	0 503	.0.08	< 0.010	10
02-09993 Cave	Ľ,		12/11/2002	387,30	2 00	< 50	8	56	00 10	6 00		0.68	v	0 030	4,12	< 0.07	< 0.02	< 0.0	1 < 0(9 62 00	€ 0.02	< 0.010	10
03-00485 Cove	J.	4	1/15/2003 >	2419 60	08 6	× 50	8	82	6	0 00		1 07		0.085	4,01	0.20	0.04	× 00	2 < 0.0	11 9,29	a 0.05	# 0.021	28
03-05260 Cove	5		6/30/2003 >	2419.60	17 50	< 50	8	55	00 10	2 00		1 19	v	0.040	1.57	0.27	900	< 0 0 ×	2 < 0.0	10 2 10	.0.07	10'0 >	13
04-01570 Cove	Ľ,		2/25/2004	275 50	4 10	< 50	8	72	8 00	4 00		1 23	v	0 020	2,35	0.41	60 0	0 0 0	3 < 0(01 6 02	.10	< 0.01	16
04-06652 Cave	J.	4	8/24/2004 >	2419 60	28 50	< 50	Q	110	00	4 00	*	0.40	۷	0 020	2,49	0.45	0.10	< 0.0	3 < D.0	01 5.52	.0.11	< D.01	16
05-02849 Cove	Ľ.	4	5/10/2005 >	2419,60	16.00	< 50	8	82	6 00	4 00		1 80	v	0 020	2,23	0.30	0.07	< 0.0	3 < 0(01 6.60	a 0.08	< 0.010	16
06-00709 Grab		0	2/3/2006			× 20	8	96	00 10	4 00 <	0 020	5 37 <	1 00 <	090 0	3.96	0.89	0 20	> 0,0	3 < 0.0	15 21	# 0.21	< 0.020	20
06-01539 CC (Srab	0	3/14/2006			* 2°C	8	76	6	0 00	0 110	4 70	0 52 <	0.060	4 45	< 0.05	< 0.01	< 0.0	3 < 00	11 12 62	€ 0.02	< 0.020	50
06-01760 cove	grab		3/22/2006			< 5.0	0	68	2 00	6 00	0.170	3 63	0 74 <	0.060	3.01	1 38	0.31	0 0	3 < 0.0	01 9.15	# 0.32	< 0 020	20
06-02039 Cove	Grab		4/3/2006			< 5.0	0	72.	8	2 00	0.030	3 22	> 11 0	0.060	3.10	0 16	0.04	0.0	3 < 0(14 10 41	a 0.05	< 0.020	20
06-02294 CC (SRAB	2	4/12/2006			* 2°C	0	74	8	4 00 <	0.020	177 <	0.05 <	0 060	3.61	0.08	0 02	0 ⁰ >	3 < 0.0	10 9.05	# 0.03	< 0.020	20
06-02767 COV	E GRAB	D	5/2/2006			× 50	g	76	8	6 00 <	0.020	1 69	0.20 <	0.060	2.51	0 28	0.06	< 0.0	3 < 0.0	1 7.47	.0.07	< 0.020	20
06-03041 Cove	Grab	•	5/15/2006			¢ 5.0	8	62	00	2,00	0 030	2 49	> EE 0	0.060	2.55	0.89	0.20	0 ⁰ 0 ×	3 < 00	01 6.10	.21	< 0.020	20
06-07106 COV	E GRAB	٥	11/8/2006			¢ 5.0	8	68	00	6 00	0.070	3 09	0.49	0.048	2 75	2 00	0.45	< 0'0	1 < 00	0 6,65	# 0.46	# 0.016	16
07-00437 Com	Grab		1/16/2007			5.0	8	48	00 21	B,00	060.0	2 00	0.44 <	0.040	1.96	1 76	0 40	< 0.0	1 < 0(60.9 00	.0.40	100 >	13
10-07332 Cove	a		12/2/2010	1119-90	17,50	< 50	R	2 40 88	6 00	4,00	D 040	11 44	> 019 <	0.061	2.90	0.97	0 22	< D 16	6 < 01	05 8,70	.27	< 0.020	8
10-07332	Cove Cr.		12/2/2010			× 5.00					0.04	11 44	*	0.02	2 90						0.22		
11-00945 Cove	č.		2/16/2011	547 50	27,50	< 20	8	8 70 54	00 6	* 00'0	0.020	2,62	0.64 <	0.061	2 50	2 83	0 64	< 01	6 < D.0	5 6.90	.0.69	€ 0.020	22
11-00945	Cove Cr.	۵	2/16/2011			< 5.00				×	0.02	2.62	Y	0.02	2.50						0.64		
11-02794 Cove	c,	0	5/18/2011 >	2419.60	30,50	5.0	8	1 20 78	900	4.00 4	0.020	8 63	0.16 <	0.061	2 20	022	< 0 0 5	< 016	5 < D.0	5 7,00	< 0.10	< 0.020	20
11-02794	Cave Cr.	۵	5/18/2011			< 5.00				v	0.02	8,63	¥	0.02	2.20						< 0.05		
11-07067 COVE	5		12/14/2011	547 50	15,60	v v	R	1 10 56	00	2.00 ×	0,020	1 20	NA «	0.031	2.50	3.14	0 71	< 010	5 < 0.0	15 7.70	.76	< 0.010	9
11-07067	COVE Cr.		12/14/2011			< 5.00				¥.	0.02	1 20	v	10.0	2 50						0.71		
12-00426 Cove	grab	•	1/18/2012			* 50	9	0 85 66	00	2.00 <	0.020	5,23	0.47 <	160.0	2 50	1 90	0 43	> 0 0	2 < D.C	1 7.60	.0.44	< 0.010	97
12-01165 Cove	ð		2/22/2012	209 80	2 00			2 10 62	8	> 00 8	0,020	1,43	0.55	0,153				× 000	2 < 0.0	10		# 0.050	20
12-01165	COVE Cr.	•	2/22/2012			€ 500				v	0.02	1.43		50 0	2.50						0,46		
12-02495	Cove Cr.	0	4/25/2012			2 00 3					0,04	2 87	•	0.01	2 14						000		
12-06184	Cove Cr.		10/23/2012			* 200				•	D.02	3,23	v	10.0	2.72						0.14		
13-00742	Core Cr.		2/5/2013			* 200				v	0,02	0 03	v	0 01	3.29						0,86		
13-02505	Core C.		5/1/2013			< 5.00					0,05	0.82	(a)	10.0	2.24						90'0		1
inden	Antonium Me-	•	0007777			- 1£	n	8/	8	05.7	0.026	28.5	00 1	1/00		0 49	tto	00	0	10.61			23
Cove	-SW composite		3/13/2006			187	je j	80	88	0.00	0.155	4 25	ET O	090.0	4 41	0.10	0.02	00		1 14.51	E0'0	0.020	8
2000	-SM composite	• •	40006			1 00	0 0	0/	3 8	8 8	0.0440	100	25.0	27 D		0.00	500			#C 7T 24	nt'n		2
COVE	-SW composite	• •	4/11/2006			9.87	2 9		38	200	0.250	010	200	200 0	2000	17 n	co o			12 2 1			1 8
Cove	-SW composite		5/1/2006			E 901		2.5	23 23	4.67	0.540	9.96	600	0.060	36 6	28.0	019			200	4C 0	0.020	3 8
Cove	-SW composite		5/14/2006			49.5		16	00	200	1 180	11.38	3 90	0.974	338	0.52	0.12	00	00	634	. 0.13	. 0.315	6
Cove	-SW composite		11/7/2006			87.5	0	55	900	6,00	0.173	5 31	0.43	0.052	2 50	1.02	0.23	0 0	1 00	0 5.90	III 0.23	. 0.017	11
Cove	-SW composite		1/15/2007			289 0	0	41.0	00	9 00 E	0.318	4.46	0.39	0.040	1.55	1.00	0.22	0 0	1 0.0	0 4.24	. 0.23	. 0.013	13
COVE	-SW comp	•	1/10/2012			35.5	0	76 15 57	00	2 00	0 155	4 27	0.56	0 154	2 03	1.75	0 40	0 0	2 0.0	1 6.40	. 0,40	# 0.050	20
Cove	-SW composite		6/4/2012			22	IN				0.0825	5,15775		0 01	2 30425						0.456	25	
Cove	-SW composite	*	3/22/2013			55	5				0 1425 1	354525		0,01	2 56975						0.20	75	
Cove	-SW composite		4/27/2013			311 7	'n				0.305	3 54725		0.01	1 9885						0.23	25	
Cove	-SW composite		5/20/2013			127	Ŋ				0.33	2 29245		0,01	1 6545						0.25	45	
Cove	-SW composite	•	5/30/2013			F	9				0.05	0.3974		10.0	1,678						0.1	26	

							Total		Total				MILTRIE		Nitrite			
summary statistics	Colony/100 mL	E. coll, Calony/100 mL	12S, Tom	Turbidity, NTU	Totai Alkalinity, mg/L as CaCO,	Total Hardness, mg/Las CaCO,	Phosphorous, mg/L TOC	" mg/L	Nitrogen,	Orthophosphate,	Chioride, mg/L	Nitrate, mc/L	me/L	Nitrite,	N SH	Sulfinte, mg/L	NO3-NO2-	Ortho-P.
Average	1540.36	15,82	5.00	2.73	77.39	85.74	CE0'0	112	0,42	0,045	2.73	0.86	610	0.05	0.01	161	0.25	00
Min	209 80	2 00	5.00	0.85	48.00	56.00	0.020	0.03	0.05	010 0	1.57	0.05	10 0	0,01	00.00	5 01	0 02	00
Max	2419 60	30.50	5.00	8 70	110 00	114 00	0.170	11 44	1 00	0 153	4.45	3.14	17.0	0.16	0.05	15.21	0.86	00
Median	2419 60	16.00	5.00	1.65	76.00	84,00	0.020	2.25	0.45	0.049	2.50	0.37	0.08	E0'0	0.01	7.23	0.11	0.0
80	1010.76	9.54	0.00	2.99	15.60	15 24	2ED-0	3 00	0.27	0.028	0.68	0.92	0.21	0.06	0.02	2.50	0.25	00
75th %tile	2419 60	19.90	5.00	2.33	00 68	95.00	0.040	3.70	0.54	0.060	2.96	1,28	0 29	0.03	10.01	9.12	0.42	0.0
Count	00 ET	13.00	31.00	6.00	23.00	23.00	24.000	32.00	14.00	32.000	31.00	22.00	22.00	23.00	23.00	22.00	31.00	23.0
90th %tile	2419.60	28 30	5.00	5 55	94 00	105.60	0.064	8 30	0.71	0.061	3,96	1.99	0.45	0.16	0.05	10.33	0 69	0'0
Cove Creek Storm water summary statistics	Total Coliform, Colomy/100 mL	E. coll, Colom/100 mL	TSS,	Turbidity,	Total Alkalinity, mg/t as CaCO,	Total Hardness, mg/Las CaCO.	Total Phosphorous, mp/L TOC	molt	Total Nitrogen, mg/L	Orthophosphate, me/L	Chloride,	Nitrate,	Nitrate as N,	Nitrite, ma/L	Nitrite as N, ma/L	Sulfate, mg/L	NO3-NO2- N	Ortho-P-1
Average	10/NIC#	ID/VIG#	85.08	76.15	66.83	75.02	0 281	4.14	0.75	0.121	2,59	0.64	0 14	0.04	001	8 48	0.19	0.0
Min	00'0	00.0	9.50	76,15	41 00	43.00	0.026	0.40	0.07	0.010	1.55	0.09	0 02	0.01	00.00	4 24	0.03	0.0
Max	000	0 00	311.75	76,15	91 00	96.00	1 180	11.38	3.90	0.974	4.41	1.75	0.40	0.17	0.05	14 51	0.46	1.0
Median	#NUM!	IMUN#	49.50	76.15	68.50	78.00	0 173	4.06	0 41	0.060	2.50	0.51	110	ED O	0.01	7 52	0.21	0.0
8	iD//IO#	HD/VIC#	68 E6	#DIV/01	15 48	16,03	0 290	2.48	1.14	0.243	0.60	0.52	0.12	0.05	0.01	3.35	0 12	00
75th %tile	#NUM!	WON#	98.42	76.15	78 00	87,13	0 324	4.81	0.53	0.067	3.11	0.95	0.22	EO.O	0 01	10.45	0.24	0.0
Count	000	00.0	15 00	1.00	10.00	10,00	15 000	15 00	10.00	15 000	15.00	10.00	10.00	10,00	10.00	10.00	15.00	10.01
Soch Xcle	INUNA	INUMI	224.40	76.15	81.10	64.68	0.502	5.62	1.29	0.196	141	100	0.25	0.07	0.02	12.74	0.34	0.10

Control Number	Sample Number	r Type	Date Collected	Total Coliform, Colonv/100 mL	E. coli, Colonv/100 mL	T5S, mg/L	Turbidity, NTU	Total Alkalinity mg/L as CaCO	, Total Hardness, mg/L as CaCO,	Total Phosphorous,	TOC, ma/L	Total Nitrogen,	Orthophosphate, ma/l	Chloride, ms/1	Nitrate, me/l	Nitrate as N, I	vitrite, mg/L ^{Ni}	trite as	Sulfate,	VO3-NO2-	
07 0CC4C	Include Court	-	FORT FLAT	CT FAT		100				J/Gm		mg/r	3		6	J∕Bш				z	Ortho-P-P
01000-10	Jenkins Creek		1002/1/TT	375 50	00 3	00.0		90 420 10 00	00.09	07000	2.08	v ·	0.040		< 0°02 <	0.01	< 0.01 <	0.00	11.80 <	0.01 <	0.013
08-0754	Jonkins Creek		8002/1C/T	000020	14.60				00'76 0		1C T	v	0.040	4,60 0,40	60.0	. 70.0	> 10.0	0.00	11,17,##	0.02 <	0,013
08-04954	Jenkins Creek		7/16/2008	> 7419.60	00 27	200			110.00		996	~ `	040 0	5T.2	00.0	010		0.00	b.08 ##	> 80.0	ET0.0
08-06912	Jenkins Creek	•	10/9/2008	1,986.30	19 90	5.00		98.00	108.00	< 0.020	2 61		0.040	3.13	0.45	0.10	> 10.0	0.00	7 93 ##	V 11 V	ETO D
09-01410	Jenkins Creek	9	3/5/2009	1,299 70	63,10 <	5.00		72.00	78,00	< 0,020	2 08	v	0.040	2.56	0,13	EOO	0.01 <	0.00	8.48 ##	0.03 <	0.013
09-03586	Jenkins Creek		6/3/2009	> 2,419.60	107,10 <	5.00		100.00	106,00	< 0,020	1.89	v	0.040	2.58	0,62	0.14	> 10 0 >	0.00	6,67 ##	0.14 <	0.013
09-05744	Jenkins Creek	0	9/2/2009	> 2,419.60	68,30 <	5.00		94.00	116,00	< 0,020	2 19	v	0.040	4.53	1,39	0.31	< 0.01 <	00.0	20,90 ##	0.32 <	0,013
09-08209	Jenkins Creek	۵.	12/9/2009	307_60	7,50 <	5.00		82.00	92,00	< 0.020	1.45	v	0,040	2.79	0,59	0.13	< 0.01 <	00.0	9,52 ##	0.14 <	0,013
CS/00-01	Jenkins Creek		0102/8/2	248.10	22,60	5.00		104.00	72.00	< 0.020	1.37	v	0,040	2.32	1,07	0.24	0.02	0.01	8.79 ##	0.25 <	0,013
10020-01	Jenkins Creek		0102/0/C	7 419 60	> 0C./	0.0		NO POT	105.00	050.0	1.83	~ `	190.0	2.80	1,15	0,26	0.16 <	0.05	## 08°6	> 1E.0	0.020
10-06768	Jenkins Creek		11/4/2010	1 799 70	14.60	2.00		74.00	104.00	0.050	01 E	/ \	190.0	1 20.10	1/0	DT n		c0.0	## 00'ZT	> 17 n	
10-07330	Jenkins Creek		12/2/2010			5.00	2 60	64.00	76.00	0.120	5 24	0.10 <	0.061	3.20	0.37	. 80.0	0.16 <	0.05	13.00 ##	> 013	020.0
10-07330	Jenkins Creek		12/2/2010		v	5.00				0.12	5.24	Y	0.02	3.20	5	2		-		0.08	070 0
11-00236	Jenkins Creek		1/12/2011	166.40	1,00 <	5.00		72,00	82.00	< 0.020	2,35	Y	0,061	3.20	0.66	0,15 +	< 0.16 <	0.05	13.00 ##	0,20 <	0.020
11-00942	Jenkins Creek		2/16/2011	307,60	8.40 <	5.00	5 40	52,00	62,00	< 0.020	2,45	0.35 <	0,061	3.40	1,02	0.23 +	< 0.16 <	0.05	12,00 ##	0,28 <	0.020
11-00942	Jenkins Creek	. а	2/16/2011		v	5.00				< 0.02	2,45	v	0.02	3.40						0,23	
11-02235	Jenkins Creek		4/20/2011	> 2,419.60	22.60 <	5.00		68.00	74,00	< 0.020	6.61	Y	0,061	2.50	< 0,22 <	0.05	< 0,16 <	0.05	8,60 <	0 10 <	0.020
26/70-II	Jenkins Creek		1102/81/5	1,413.60	34,10 <	5.00	2 70	74.00	82,00	< 0.020	60.9	0,19 <	0,061	2.70	0,44	0,10	< 0.16 <	0.05	## 06 8	0.15 <	0.020
26/20-TT	Jenkins Creek		TT07/91/C	02.014 5	00 1	00.0		00 00		20.0	0,03	v	0.02	0/77						0 10	
CZUPO-II	Jenkins Creek		1102/17/01	00 LC3 C		00.2		10.05	00 001	0000 v	AT C	`	190.0	3.70	0,62	0 14	> 70 0	10.0	8.40 ##	0 15 ##	0.020
11-07065	Jenkins Creek		1102/67/01	761 30	001	00.5	1 80	10.40	00 201	0.020	1 20	V VN	TEO O	00 5	BC 1	02.0	0.16 /	10.05	## 00 07		010 0
11-07065	Jenkins Creek	a.	12/14/2011			5.00		20	00 4	< 0.02	1 20		10.0	3.00	07			co.o	## 00 7T	> PC.0	0T0/0
12-01163	Jenkins Creek		2/22/2012	224.70	2 00		2.00	60.00	66.00	< 0.020	66'0	0.28	0.092			v	0.02 <	0.01	###	0 01 ##	0.020
12-01163	Jenkins Creek		2/22/2012		v	5,00				< 0.02	0,99		0.03	3,10						0.23 ##	0.010
12-02493	Jenkins Creek	•	4/25/2012		•	5.00				0.02	2,92	v	0.01	3,00						0.12 <	0,003
12-06181	Jenkins Creek		10/23/2012	0	•	5,00				 0.02 	1,75	v	0.01	6.50						> 60 0	0,003
13-00739	Jenkins Creek		2/5/2013		•	5.00				0.02	0.39	~	10.0	6,35						0 36 <	0,003
TNC70-51	Jenkins Creek	•	51U2/11/2		•	00 5	100 11			0.03	0.8/	V	10.0	2.86						0.05 <	0 003
11-02013	Jenkins-SW-grat	•	1102/11/4			19 00	65.00	46.00	54 00	060 0	6.85	0.40 <	0,061	2.60	0.66	0.15	< 0.16 <	0,05	8.80 ##	0,20 <	0 020
7/SUU-21	Jenkins-Sw-grat	•	7T07/c7/T			10 55	00 49	26.00	30,00	0,130	5,88	0,66	0.154	1.30	146	0.33	: 0.02 <	0.01	6.60 ##	0.34 ##	0.050
		Jenk Baselir	kins Creek ne summary	Total Coliform, Colonv/100 mL	E. coli, Colonv/100 mL	TSS, me/L	Turbidity, NTU	Total Alkalinity, mg/L as CaCO.	Total Hardness, me/L as CaCO.	Total Phosphorous,	TOC, ma/L	Total Nitrogen, O	hthophosphate, ms/l	Chloride, ms/I	Nitrate, mo/I	Nitrate as N, N	litrite, mg/L Nit	rite as mo/i	Sulfate, ?	IO3-NO2-	Ortho-P-P
		K	tatistics					8		mg/L		mg/L		2	-	mg/L				-	
		Average		1,315.57	23.45	5.13	2.90	78.55	89.73	0.030	2.77	0.23	0.040	3,37	0,61	0.14	0.07	0.02	10.98	0.16 ##	0.01
		uiw		199-901	00.T	00.5	1,80	10.22	97.00	070 0	0.39	01.0	010.0	2.19	0.05	10'0	10-0	0.00	6.08	0.01	0.00
		Madian	1	00 120/2	14 60		04 0	10.4.0L	00 26	UCU U	10.0	46 U	760 0	00.0	1.30	TE'n	OT D	c0.0	0.65	0110	50.0
		20		955.15	26.81	0.73	1.45	15.25	17.32	0.026	1.74	0,11	0.021	1.03	0,40	60'0	0.08	0.02	4 29	0.10	0.01
		75th %ti	ile	2,419.60	26.50	5.00	2,70	92.00	105.50	0.020	3,78	0.30	0,061	3,66	0,85	0,19	0,16	0.05	12 00	0,23	0,02
		Count		21.00	21,00	30°00	5,00	22,00	22,00	31.000	31,00	4,00	31,000	29.00	20,00	20°00	22,00	22.00	20.00	30.00	28,00
		90th %ti	ile	2,419,60	63.10	5,00	4.32	99.80	109.80	0.050	5.24	0,33	0,061	4.59	1.16	0,26	0.16	0.05	13.79	0.31	0.02
		Geomea	up	895,709	11.616	5.099	2.673	77.116	88.104	0.025	2.267	0.209	0.034	3.246	0.454	0.103	0.035	0.011	10.349	0.117	0.012
		Jenkins	Creek Storm	Tatal Californ	c cali	TCC	Turchidihu	Total Alkalinity	Tatel Hardnoce	Total	+	Total		chlorida	Alternag	Nitrate	- AN	;			ľ
		wate	er summary tatistics	Colony/100 mL	E. COII, Colony/100 mL	ug/L	NTU	mg/L as CaCO ₃	mg/L as CaCO ₃	Phosphorous, mg/L	ng/L	Nitrogen, ^U mg/L	rtroprospriate, mg/L	unioriae, mg/L	mg/L	as N, N mg/L	litrite, mg/L NIC N,	mg/L	mg/L	N N	Ortho-P-P
		Average		#DIV/01	i0/∧IC#	26.00	65.00	36.00	42.00	0.110	6.36	0.53	0.107	1,95	1.06	0.24	60 0	0.03	7,70	0.27	0.04
		Min		0.00	00'00	19,00	65.00	26.00	30.00	060 0	5,88	0,40	0,061	1.30	0'66	0,15	0,02	0.01	6,60	0.20	0.02
		Max	Ś	0.0	00'0	33,00	65,00	46.00	54,00	0.130	6.85	0,66	0,154	2,60	1,46	0,33	0,16	0.05	8,80	0,34	0,05
		CD CD				00'07	00.00	10.05	16 97		0.60	0.18	10T'0	C2.1 C0 0	1.0b	0.13	01.0	50°0	1 56	010	40.0
		75th %ti	ile	IWDN#	WON#	29.50	65.00	41.00	48.00	0.120	6.60	0.59	0.130	2.28	1.26	6C'0	0.13	co.04	92 B	OE O	0.04
		Count	(0.00	0.00	2.00	2,00	2.00	2,00	2 000	2 00	2.00	2,000	2.00	2.00	2,00	2.00	2.00	2.00	2.00	2.00
		90th %ti	ile	WNN#	WON#	31.60	65.00	44,00	51.60	0.126	6.75	0.63	0.144	247	1.38	0.31	0.15	0.05	8.58	0.32	0.05

Control			į	Total Collébres	E coll	Ĕ	Trebleton Trebal Alfrahm	. Total Hardman	F	otal		Total Deter			-	vitrate .	_	Vitrite		n - USGS d	vile		Total		
Number	Sample Number	Type	Collected	Colony/100 mL	Colony/100 mL	mg/1	NTU mg/Las Caco	13 mg/Las caco	, Phosphor	ous, TOC, mg. ng/L	A. Nitr	ogen, Urmop mg/L	maspnare, u mg/L	mg/L	mg/L	, N se Mg/L	mg/L	No. Nom	13-NO2: St	mg/L discha	age and	Phosp 1	horus NO3-N	02-	9
02-05018 L	uttle Lee Cr.	•	6/18/2002	2419.60	200 4	899	580	0 640	0 >0	030 2.6	1		£E0 0	3 23	0.22	> 50.0	0.01 <	000	50.05	578 16	100 43	101	2.59	153 00	13
02-05668 L	ittle Lee Cr.	a	7/11/2002	1986 30	1 00 <	200	640	0 86.00	0	050 < 05	D	×	0.030	3 45	0.25	> 90.0	> to o	0.00	0.06	5.10 4	1.80 12	08.6	1.29	54 00	9
02-09995 L	ittle Lee Cr.	4	12/11/2002	328,20	5 20 <	2 00	44.0	0 54.00	0 > 0	030 05	53		0.038	6,23 <	0.07 <	0.02 <	> 10 0	0.00	0.02	6.93	9.30 81	06 8	0.53	0.34 0.0	5
03-00482 L	ittle Lee Cr		1/5/2003	2419 60	10.80 <	5 00	0.44	0 20.00	0 × 0	030 0.6	54	v	0.040	5 04	0.22	0.05 <	0.02 <	0.01	0.06	6.79 21	1.00 56	5 70	3 39	29 0.0	619
04-01573 L	ittle Lee Cr.		2/25/2004	275 50	21,10 <	2 00	45.0	0 58.00	0	020 2.2	2	v	0.050	2.76	0.36	> 80.0	> E0 0	0.01	60 0	5.34 55	5.00 148	1 60	5,93 26	87 0.0	16
04-06649 L.	ittle Lee Cr.		8/24/2004	2419,60	3 10 <	2,00	70.0	20 00	0	060 0.6	53	v	0.050	3.02	D.23	> 50 0	> 60 0	0.01	0.06	4.68	5.70 1.84	0.49	2,17	2.18 D.C	16
05-02846 L.	ittle Lee Cr		5/10/2005	2419,60	67,00 <	2.00	60.0	0 99 66 00	0 > 1	020	9	v	0.060	2 54	0,29	> 10.0	> 50.0	10.0	0 08	5.51 52	3.00 142	7 72	5,71 2:	44 00	8
06-01544 L	LC Grab		3/13/2006		~	5,00	56 D	0 89 00	0	060 2.9	4	0.15 <	0.060	10.06	0.17	> 50 0	> 60.03 <	10.0	0.05	7.98 50	0.00 134	5,91	16,16 10	2.74 0.0	50
06-01755 li.	ttle lee grab	٥	3/22/2006		v	2,00	36.0	44 00	0	210 25	5	0,25	0 162	4 76	0 46	> 01 0	> 60.03	0.01	0 11	6.57 128	344	1 60 8	44.82 7	64 D.C	53
06-02285 L	LC GRAB		4/11/2006		×	S.00	36.0	44 00	0	060 1.6	v	0.05 <	0.060	4 44	0.08	0.02 <	> 60.03	0.01	0.03	6.00 66	:681 00.8	1.80	21.98	72 00	20
06-02631 L	attle Lee Grab		4/27/2006		v	S.00	42.0	0 52.00	0 > 0	020 2.0	5	0,15	0 137	5 77	0,18	> 10 0	> 60.03	10.0	0.05	5.71 37	166 00.7	5 71	3.99 10	00 00	45
06-02782 L	LC GRAB	0	5/2/2006		v	S 00	36.0	40.00	0	140 15	9	0.28 <	0.060	3.06	0.33	D D7 <	> 60.0	0.01	0.08	5.19 156	5.00 4203	2 36 1	17.67 65	27 DD	8
06-03796 L	LC Grab		6/9/2006			10.00	50.0	0 60.00	0	040 3.4	4	0 28 <	0 040	3 43	3 43	077 <	0.05	0.02	0 79	5.34 42	226	2 81	9.05 178	0.0 77 3	13
06-07026 L	ITTLE LEE GRAB	0	11/B/2006			5.00	38.0	0 46.00	0	020 2.3	ŋ	0.38 <	0.040	3.73	1 07	0 24 <	> 10.0	0.00	0.24	6.14 613	3.00 1651	3.12	56.05 806	130 00	13
06-07996	TTLE LEE GRAB		12/4/2006			2,00	34 0	0 46.00	0	090 1 6	m	> 66.0	0.040	2.92	1.51	034 <	> 10.0	0.00	0.34	5.33 201	1.00 758(0.41	97.46 373	116 00	13
07-00109	TTLE LEE GRAB	•	1/2/2007		*	5.00	28 0	38.00	0	140 1.8	Q	0.28 <	0.040	5 43	1 10	0 25 <	> 10 0	0.00	0 25	5.20 231	00 622	1 1	74 24 31	62 0.0	13
07-00422 L	ittle Lee Grab		1/16/2007			10,00	30.05	34.00	0 > 0	020 1.8	8	0.41 <	0.040	2 12	1 31	> 06.0	> 10.0	0.00	0.30	4.68 627	7.00 33780	0.50	57.56 101	94 00	13
07-01048 L	ittle Lee Grab		2/15/2007		*	5 00	28.00	36.00	0 > 0	020 1.7	2	0,21 <	0.040	2 02	0.70	0.16 <	> 10 0	0.00	0.16	5.22 355	5.00 9563	3.06	38 25 30	198 00	13
10-07329 Lu	ittle Lee Cr.		< 012/2/2010	2419 60	20.10 +	5 00	2.90 48.00	54 00	0	130 6.9	1	0,12 <	0.061	4 20	0 53	0 12 <	0.16 <	0.05	0 17	6.90 9	9.60 256	19 61	6 72 8	179 00	20
10-07329 Li	ittle Lee Cr		12/2/2010		*	5 00			0.13	169		v	200	4 20				0	0.12						
11-00943	ittle Lee Cr.		Z/16/2011	1119 90	18.90 <	5.00	8 10 38 00	44 00	0	040	6	0.23 +	0.061	3 70	0.66	0.15 <	0.16 <	0.05	0.20	7.60 40	107	63	R 67 4	10 00	00
11-00943	Little Lee Cr.	0	2/16/2011			5.00			40.0	1.99			002	3 70					115						2
11-02791	ittle Lee Cr		5/18/2011	2419 60	44.30 <	S.00	5 10 44 00	48 00	0 ×	020 5.1	4	0.14 *	0.061	2 30 <	022 €	> 50'0	016 <	0.05	0 10	5.60 471	D0 1268	68 /	50.75 25	76 0.0	20
16720-11	Little Lee Cr.	0	5/18/2011		*	5 00			< 0.02	5.14		v	0.02	2.30				v	200						
11-07064	ittle Lee Cr.		12/14/2011	517 20	28,20 €	5 00	2.60 40.00	46 D0	0 ×	020 1.2	a	NA +	160.0	3 00	1 86	0.42 <	0.16 <	0.05	0.47	7 60 134	1 00 360	3 72	14 44 339	31 00	9
11-07064	Little Lee Cr		12/14/2011			5 00			< 0.02	1.20		*	100	3 00				0	1 42						
12-01162 L	ittle Lee Cr.	•	2/22/2012	193 50	4,10		2,30 40.00	44.00	0 ×	020 1.5	5	0.24	0.123			v	0.02 <	10.0	0.01	142	00	000	15 30	0.0 68.1	40
12-01162	Little Lee Cr.		2/22/2012		~	5 00			< 0.02	153			104	3 10				0	217						
12-02492	Little Lee Cr.		4/25/2012		v	5.00			0.04	2.22		¥	101	2 90				J	0.07						
12-06182	Little Lee Cr.	۵	10/23/2012		v	5.00			€ 0.02	2 03		v	100	7 14				0	0 14						
13-00740	Little Lee Cr.		2/5/2013		v	5 00			\$ 0.02	0.33		*	100	5 28				0	53						
13-02502	Little Lee Cr.	٥	5/1/2013		v	5.00			0.02	0.35		¥	100	2.75				J	005						
-	LO-SW composite		1/13/2006			225 25	24 DC	30.00	0	230 3.4	1	0.27	0.043	1.50	0.76	0.17	0.01	0.00	0.18	4.00 3340	00 4053310	0.14 41	38.79 3155	20 00	14
-	LC-SW compounts		3/14/2006			6.25	46.00	58.00	0	3.4	m	0.05	0.060	9.54	0.05	0.01	0.03	10 0	0.02	7.84 53	178/	1 66	24.27	00 58	2
3	LC-SW composite	•	3/20/2006			5 00	44.00	54 00	0	215 2,5	4	0.15	0.093	7_79	0.15	0.03	6.03	10 0	0.04	7.09 240	000 6465	5 17 2	78.00 55	40 00	80
L.	LC-SW composite	•	4/7/2006			11 67	35.00	42 50	0	128 2.7	2	110	0.060	5 45	110	0.02	0.03	10 O	0.03	6.61 294	00 18476	5 97 20	01.96 S3	92 00	8
1	LC-SW composite		4/25/2006			9 25	42.50	47.50	0	778 2.1	ei)	0 17	0.060	4 82	0,12	0.03	0.03	0 01	0.04	5.52 61	SEDE 00"	86 6	25 47 12	22 0.0	8
L	LC-SW composite	•	4/29/2006			19 50	31.00	38.00	0	130 2,6	0	0.14	0 060	3.88	0,13	60.03	0.03	10 0	0.04	4.92 741	00 77848	8.70 5:	157 157	31 00	20
Т	LC-SW composite	*	6/7/2006			28.00	42.00	36.00	0	213 5.0	Ð	0.50	0.040	2.87	0.87	0.20	11.0	0 03	0 23	4.83 165	.00 24890	11 060	39 64 204	35 0.0	13
L	LC-SW composite		11/6/2006			70 50	32.00	41.50	0	193 3.6	2	0 22	0 040	4.17	0.43	0.10	0.01	000	0.10	5.75 2200	00 835622	22	31.67 1186	03 0.0	6
П	LC-SW composite		11/30/2006			161 75	30.50	37.50	0	305 3.1.	S	0 24	0 040	2 82	0.77	0.18	10.0	000	0.18	5.04 2930	00 2553350	0.76 48	14.66 2310	67 0.0	E
1	LC-SW composite	*	12/30/2006			129 25	24 50	31.25	0	3.6	4	0.25	0 040	2.13	0,50	0.11	0.01	0 00	0.12	4.69 2210	3538938	37	30.37 1372	97 00	6
Ц	LC-SW composite		2/13/2007			56.50	25 00	34.67	0	145 2.6	9	0.24	0.040	2.24	0,51	0.11	10.0	00 0	0 12	6.76 1440	00 438336	111 66.3	24 94 915	79 00	E
Ц	LC-SW composite	•	1/29/2013		-	79.5825			0	300 2 332	00		0 010 2	4 1745									0	24	
Г	LC-SW composite	•	3/10/2013			157 875			0	235 2.44	7		0 010 3	24925									0.24	225	
Ц	LC-SW composite		5/20/2013			106 75			0	260 1.07	8		010 0	2 1405									0.19	125	
Ц	LC-SW composite	•	6/1/2013			18.5			0	100 0 5513	5		0.010 2	32575									0 15	375	

Little Lee Creek Baseline summary statistics	Total Coliform, Colony/100 mL	E, coll, Colony/100 mL	,251 1/3 m	Turbidity, NTU	Total Alkalinity, mg/Las CaCO ₃	Total Hardness, mg/L as CaCO ₃	Tolal Phosphorous, T mg/L	oc, mg/L	Total Nitrogen, mg/L	Orthophosphate, mg/L	Chloride, mg/L	Nitrate, mg/L	Nitrate as N, mg/L	Nitrite, mg/L	Nhrifta as N, mg/l.	N03-ND2- N mg/L	Sulfate, mg/L	USGS dally discharge (cfs)	Y≊b/di 25T	Total Phosphorus Ib/day	03-NO2- N Ib/day	rthoP-P
Average	1578 18	16.82	5.39	4 20	43.91	50.96	0.051	2.20	02	4 0.047	3.92	0.69	0.16	0.05	10'0	017	5.96	150.63	4769.00	38.03	168 98	20.0
Min	193,50	1.00	2,00	2.30	28.00	34.00	0.020	0.33	00	5 0.020	2 0 2	0.07	0.02	0.01	000	0 01	4.68	3.30	00 0	0.53	0 34	100
Max	2419 60	67.00	10.00	8.10	70.00	70.00	0 210	6.91	0.4	1 0 162	10.08	3,43	0 77	0.16	0.05	0.79	7.98	627.00	33780 50	174 24	1012 94	50.0
Median	2202 95	14.85	5.00	2,90	42.00	48 00	0 030	1.84	02	4 0.040	3.43	0.34	0.08	E0.0	0.01	0 11	5.66	55.00	1481 60	14 44	26.87	0.02
8	996 67	19,95	1 28	2.44	11.35	10.67	0 048	1,68	0.1	0 035	171	0.79	0.18	0.06	0.02	0.18	0.97	189 03	7684.74	50 40	268 08	10.0
75th %tile	2419 60	22.88	5.00	5,10	49.00	59 00	0.060	2.39	02	8 0.060	4 60	0.98	0 22	E0 0	0.01	0 21	6.73	178.50	5212 54	58 40	281 87	0.02
Count	12 00	12,00	31.00	5,00	23 00	23 00	32,000	32,00	15.0	0 32 000	31.00	22.00	22 00	23 00	23.00	32 00	22.00	23.00	23.00	23.00	23 00	23.00
90th %tile	2419 60	42,69	5.00	6.90	59 60	66.00	0,130	4.97	0.3	8 0.061	S. 77	1.49	0 34	0.16	0.05	0 41	7.53	447.80	12062 93	113.63	366 39	0.04
Geomean			1		5		0.037		5													4
Little Lee Creek Storm Water	Total Coliform, Colony/100 mL	E. coll, Colony/100 mL	TSS, mg/L	Turbidity, NTU	Total Alkalinity, mg/Las CaCO ₃	Total Hardness, mg/L as CaCO ₃	Total Phosphorous, T mgit	DC, mg/L	Total Nitrogen, mg/L	Orthophosphate, mg/L	Chloride, mg/L	Nitrate, mg/L	Nitrate as N, mu/L	Ntortte, mg/L	Nitris.	NOB-NO2- N mg/L	Sulfate, mg/L	USGS daily discharge	TSS lb/day	Tetal Phosphorus Ib/day	ID3-NO2-	rthoP-P
Average	IO/NIC#	I0/VIC#	79.04	#D/V/OI	3423	40.95	961.0	2.76	02	1 0.041	12.2	070	0.05	50.0	100	010	5,73	1243.09	868369-78	1579.89	662 03	005
Min	0.00	00'0	5.00	00 0	24.00	30.00	0,078	0.55	0.0	5 0.010	150	0.05	0.01	100	000	0.02	4,00	53.00	1784 66	24.27	0.15	to:0
Max	000	00'0	225.25	00 0	46.00	58.00	0,318	5.03	0.5	660 0 0.033	24.17	0.87	0.20	11.0	60.03	0 23	7.84	3340.00 4	053310 14	4814 66	3155 20	0.03
Median	IWON#	IMUN#	56.50	IMUN#	32.00	38.00	0,213	2.66	0.2	2 0.040	3.25	0.43	010	E0 0	10.0	010	5,52	741.00	77848 70	518.99	55 40	10:0
80	ID/VID#	ID//JD#	74 84	#DIV/01	8.23	897	0,081	1.08	0.1	2 0 024	5.69	050	0.07	100	0.01	0.07	1,19	1235 60 1	1338656 47	1845 03	1051,66	100
75th Nulle	#NUM!	IWON#	143,56	IWDN#	42.25	45.00	0.248	3,42	0.2	4 0.060	5 13	0.64	0.14	20.03	10.0	0 15	69 9	2205.00 1	187280.96	3031.02	1050 91	0.02
Count	000	00.0	15.00	00'0	11 00	11.00	15,000	15.00	0.11	0 15 000	15.00	11 00	11 00	11.00	11 00	11.00	11.00	11.00	11.00	11.00	15.00	1100
90th Witle	IMUM	IWINIE	172.45	INUM	44,00	54.00	0,303	3.63	0.2	7 0.060	8.84	0.77	0.18	0.03	100	0.18	2,05	2930.00 2	553350.76	4138.79	2235.59	0.02

Ministry	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 05 0 70 1 04 1 35 0 40 1 35 0 40 0 40	×	0.051	2 65	0.27	0.06 <			1		
M KHRUC, SM K	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	070 1,04 1,37 0,50 0,40 1,35	۷	0.051				> TO D	0,00	551#	0.06 #	0 011
B) B) Control Contro Control Control </td <td>55.00 0.030 58.00 0.030 58.00 0.030 58.00 0.020 64.00 0.110 64.00 0.020 55.00 0.020 55.00 0.020 55.00 0.020 55.00 0.020 55.00 0.020 55.00 0.020 48.00 0.020 66.00 0.020 66.00 0.020 64.00 0.020 64.00 0.020 64.00 0.020 64.00 0.020 64.00 0.020 64.00 0.020 64.00 0.020 64.00 0.020 64.00 0.020 64.00 0.020</td> <td> 1,04 0,50 1,37 1,36 1,36 </td> <td>×</td> <td></td> <td>20.7</td> <td>0.38</td> <td>0,08</td> <td>0 01</td> <td>00'0</td> <td>4.84 #</td> <td># 60'0</td> <td>0,017</td>	55.00 0.030 58.00 0.030 58.00 0.030 58.00 0.020 64.00 0.110 64.00 0.020 55.00 0.020 55.00 0.020 55.00 0.020 55.00 0.020 55.00 0.020 55.00 0.020 48.00 0.020 66.00 0.020 66.00 0.020 64.00 0.020 64.00 0.020 64.00 0.020 64.00 0.020 64.00 0.020 64.00 0.020 64.00 0.020 64.00 0.020 64.00 0.020 64.00 0.020	 1,04 0,50 1,37 1,36 1,36 	×		20.7	0.38	0,08	0 01	00'0	4.84 #	# 60'0	0,017
M. MICHUC B. 202/0001 S. 202300 S. 2023000 S. 2023000	74,00 0.030 85,00 0.035 86,00 0.110 74,00 0.110 74,00 0.020 86,00 0.020 74,00 0.020 48,00 0.020 66,00 0.020 48,00 0.020 66,00 0.020 66,00 0.020 64,00 0.020 40,00 0.020 40,00 0.020 42,00 0.020 42,00 0.020 42,00 0.020	 0,50 1,37 0,40 1,36 			4 62	0.48	> 11 <	0.02 <	0.01	7.05 #	0.11 <	0.013
0.00000000000000000000000000000000000	60.00 64.00 < 0.110 74.00 < 0.020 58.00 < 0.020 48.00 < 0.020 66.00 0.030 66.00 0.030 64.00 0.030 44.00 0.030 44.00 0.030 42.00 0.030 42.00 0.030 42.00 0.030 43.00 0.030	136 136	~ `	0,040	12.2	0.30	> 0.0	0.02 <	0,01	4.45 #	0.07 <	0,013
Mithenker Filtering Submittering	64.00 0.020 74.00 0.020 75.00 0.020 52.00 0.020 48.00 0.030 60.00 0.030 60.00 0.030 60.00 0.030 44.00 0.080 40.00 0.080 40.00 0.080	1,36	· ·	0.050	3 18	0.45	> 01.0	> E0'0	10'0	# 11 9	> 110	910.0
M. Kindian B. 3/4/008 S. 3/4/008 S. 3/2	74.00 0.020 52.00 0.024 52.00 0.020 48.00 0.030 60.00 0.030 60.00 0.030 40.00 0.020 40.00 0.098 40.00 0.098 40.00 0.098		v	0.060	2.55	0.21	0.05 <	> E0 0	0.01	4 89 #	0.06 <	0.020
No. Control No. Contro No. Contro	30.00 0.000 48.00 0.010 48.00 0.030 66.00 0.030 50.00 0.030 64.00 0.020 44.00 0.080 44.00 0.080 42.00 0.080 40.00 0.080 40.00 0.080	2.70 <	> 50.0	0 060	11 01	0.08	0,02 <	> 60.0	100	12.30 #	> 50'0	0.020
T/M MEAC B S20208 F S00 S00 <td>48.00 0.100 66.00 0.030 50.00 0.023 50.00 0.033 44.00 0.090 44.00 0.080 40.00 0.028</td> <td>2.14 <</td> <td>0.05 <</td> <td>0.060</td> <td>8 97</td> <td>0.23</td> <td>0.05 <</td> <td>> cu u</td> <td>T0'0</td> <td>6 28 #</td> <td>> 900</td> <td>0.020</td>	48.00 0.100 66.00 0.030 50.00 0.023 50.00 0.033 44.00 0.090 44.00 0.080 40.00 0.028	2.14 <	0.05 <	0.060	8 97	0.23	0.05 <	> cu u	T0'0	6 28 #	> 900	0.020
0 Mit Field Gine 0 Bio Gine 500	66.00 0.030 60.00 0.020 50.00 0.030 44.00 0.090 40.00 0.080 40.00 0.080	1.30	0.14 <	0.060	2.98	0.32	0,07 <	> 60.03 <	10'0	5 64 #	0.08 <	0.020
III III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	60.00 0.030 50.00 0.030 44.00 0.080 40.00 0.080 40.00 0.080	3.31	0.18 <	0 040	IS E	0.29	0,07 <	0.01 <	0.00	5,70 #	0.07 <	0.013
Interface 1 1 2	44.00 40.00 40.00 40.00 40.00 0.080 0.080 0.080 0.080	17.2 DE 5	034 <	0.040	3.76	0.84	> 61.0	> 10 0	000	6 20 #	> 19 <	0.013
N. Freeding D 1/02/07 1	40 00 0 0000 40 000 0 0000 40 00 0 0 000 0 0 000 0 0 0 0 0 0 0 0 0 0	1.63	> 61.0	0.040	2 20	0.49		< 10.0	000	# 10.0	c1.0	STOO
M. Freik Giss D ////////////////////////////////////	40.00 0.080 40.00 0.020	1,89	0.15 <	0,040	12.75	0.37	0.08 <	> 10.0	0.00	4 63 #	> 60'0	0,013
Number (Mather) Mather) Mather) <td>40.00 0.020</td> <td>1.80</td> <td>0.18 <</td> <td>0.040</td> <td>1 60</td> <td>0.49</td> <td>0.11 <</td> <td>0.01 <</td> <td>0,00</td> <td>4.32 #</td> <td>0.11 <</td> <td>0,013</td>	40.00 0.020	1.80	0.18 <	0.040	1 60	0.49	0.11 <	0.01 <	0,00	4.32 #	0.11 <	0,013
Miteriol. B 17/12/101 Sea of 31/3 31/3 5 500 31/0 6400 6400 Miteriol. B 2/5/3/2011 3/19 6 500 31/0 6 500 300 660 6		1.48	0.11 <	0.040	1.76	0.37	> 80'0	0.01 <	00'0	4 88 #	> 60'0	0,013
M. Ferricity Description 3/15/011 3/75 3.3.10 5.00 3.0 6.00 6.00 M. Ferricity Description 3/15/011 3/15 3.1.1 3/15 5.00 3.1.0 6.00 6.00 6.00 6.00 M. Ferricity Description 1.1.1 3.1.1 <	00 PC	0/ 5	> 80 0	190.0	2.90	0.39	> 60'0	0.16 <	0.05	5.80 #	0.14 <	0,020
MithentCr. b 5/16/2011 2419 60 500 319 660 500 MithentCr. b 5/16/2011 543 11.31 6 500 190 4600 500 MithentCr. b 5/13/2011 543 11.21 6 500 190 4400 4600 MithentCr. b 2/2/2013 1/2.20 100 6 500 190 4400 4600 MithentCr. b 2/2/2013 1/2.20 100 6 500 190 4600 MithentCr. b 2/2/2013 1/2.20 100 6 500 160 4700 4600 MithentCr. b 2/2/2013 1/2.20 100 6 500 6 500 6 500 MithentCr. b 2/2/2013 1/2/2013 1/2/2013 1/2/2013 1/2/2013 1/2/2013 1/2/2013 1/2/2013 1/2/2013 1/2/2013 1/2/2013 1/2/2013 1	46.00 0.040	1.95	0.28 <	0.061	2,80	0 93	0.21 <	0.16.<	0.05	6.20 #	0.26 <	0.020
(1) (1) <td>0.04</td> <td>1 95</td> <td>v</td> <td>0,02</td> <td>2,80</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.21 <</td> <td>0,007</td>	0.04	1 95	v	0,02	2,80						0.21 <	0,007
Matrix S //3/2011 643.80 12.10 5.00 190 42.00 46.00 Matrix B 2/2/3/2011 172.20 100 4<00 46.00 Matrix B 2/2/3/2011 172.20 100 5.00 190 4.00 46.00 Matrix B 2/2/2011 172.20 100 5.00 190 45.00 Matrix B 2/2/2013 172.20 100 5.00 190 45.00 Matrix B 2/2/2013 172.20 5.00 190 45.00 700 Matrix B 2/2/2013 172.20 5.00 190 45.00 700 Matrix B 2/2/2013 172.20 5.00 45.00 700 45.00 Matrix B 2/2/2013 172.00 172.00 172.00 45.00 45.00 45.00 Matrix B B B B B B B B B	52,00 < 0.020	5,66	0.12 <	0.061	2 00 <	0.22 <	0.05 <	0.16 <	0.05	5.20 <	0.10 <	0,020
Mit Feet C. Display in the feet C.	2010 > 00.94	1 20	V VN	1000 U	2,000		O AE		0.05	V 1	0.05 <	0,007
Mit Fertice b 2/22/2012 1/22 0 4,00	< 0.02	1.20		10'0	2 60	ת ת	5		600	# 76 n	0.45 <	EDO D
Mittento. b 2/25/2012 c 5.00 45 7.70 Mittento. b 2/25/2013 c 5.00 45 7.70 Mittento. b 2/27/2013 c 5.00 45 7.70 Mittento. b 2/27/2013 c 5.00 31.75 5.00 5.00 5.00 Mittento. b 2/27/2013 5.00 31.75 32.00 32.50 42.60 Mittensol compasite 1/17/2006 111.100 5.00 32.50 32.50 32.50 32.50 Mittensol compasite 1/15/2007 32.50 32.50 32.5	46.00 0.020	1,72	0.35	0.031			*	0.02 €	0.01		*	0.010
Mitenet. 9./35/2012 < 5.00 Mitenet.c. 5./2/2013 < 5.00	0.02	1.72		100	2.50						# 00.0	0,003
Mitchent S / 1/2013 K = 5.00 S / 1/2013	< 0.02	2.28	•	0,01	2.73						0,07 <	0,003
Mit Fics Wit comparise 5 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0.02	1.04	• •	Toio	/9.0						> 1F.0	E00 0
With Fk-SW comparise * 31/3/2006 31/3/2 500 64/30 71/30 Min Fk-SW compasite * 41/12/006 11/7 <t< td=""><td>0.04</td><td>0.71</td><td></td><td>100</td><td>EC.C</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.003</td></t<>	0.04	0.71		100	EC.C							0.003
Mitrike/SW comparise 3/21/2006 31/35 5000 6450 5200 Mitrike/SW comparise 5 5/1/2006 31/35 5/1/2006 5/	620.0 00.77	3 42	60.0	0,060	21.67	0.24	0.05	E0.03	0,01	9,57 #	0.06 #	0.020
Min FixSiv composite 5 /11/2006 12.53 4 6.67 5 2.50 Min FixSiv composite 5 /17/2006 11/2006 13.05 49.90 61.00 Min FixSiv composite 5 /17/2006 11/12/2006 11/12/200 49.90 61.90 Min FixSiv composite 5 /17/2006 11/12/2006 11/12/200 49.90 61.90 Min FixSiv composite 5 /17/2006 11/12/200 35.00 49.90 61.90 Min FixSiv composite 5 /17/2005 53.00 111.00 35.00 41.90 Min FixSiv composite 5 /17/2005 53.50 34.90 42.00 Min FixSiv composite 1/15/2005 53.50 34.90 42.00 Min FixSiv composite 1/15/2005 53.50 34.90 42.00 Min FixSiv composite 1/15/2016 133.00 41.90 32.00 41.90 Min FixSiv composite 1/15/2016 133.00 132.00 32.00 41.90 Min FixSiv composite 1/16/2016 10.01 10.00 50.00 50.00 <td>64.50 D.210</td> <td>3.18</td> <td>0.19</td> <td>0,060</td> <td>7.79</td> <td>0.24</td> <td>0.06</td> <td>E0.0</td> <td>0,01</td> <td>9.23 #</td> <td># 90.0</td> <td>0 020</td>	64.50 D.210	3.18	0.19	0,060	7.79	0.24	0.06	E0.0	0,01	9.23 #	# 90.0	0 020
Min Fk-SW composite e 0.1200 0.1202 0.000 0.100 0.000 <th0.000< th=""> 0.000 0.000</th0.000<>	52.50 0.093	3 05	0.15	0,095	4.95	0.15	E0.0	E0.0	10'0	6.58 #	0.04 #	10.031
Min FkSW composite 9/25/2006 9/25/2006 9/35/20 64/36 Min FkSW composite * 1/1/2007 93/30 94/30 55/30 Min FkSW composite * 1/1/2007 93/30 94/30 54/30 64/30 Min FkSW composite * 1/1/2007 93/30 34/30 47/30 54/30 41/30 Min FkSW composite * 2/14/2007 53.30 34/30 41/30 41/30 Min FkSW composite * 2/14/2007 Ecoli, 75/3 34/30 41/30 Min FkSW composite * 2/14/2001 Ecoli, 75/3 32.00 41/30 Min FkSW composite * 2/14/300 mil E.coli, 75/3 20.00 90.00 Min FkSW composite * 1/1/2007 Total fainthy, Total Alkalinhy, Total Alkinhy, Total Alkali	0000 0019	4 49	0.20 D 24	1000	07.4	0.44	90.10	EU.U	TOD	# 96 5	010	0.020
Min Fk-SW composite 11/7/2005 11/7/2005 11/7/2005 55.50 47.50 55.55 Min Fk-SW composite 1/1/2007 56.00 10.00 35.00 44.50 Min Fk-SW composite 1/1/2007 53.50 54.50 34.50 44.50 Min Fk-SW composite 1/1/2007 53.50 34.50 34.50 44.50 Min Fk-SW composite 1/1/2007 53.00 34.50 34.50 44.50 Min Fk-SW composite 1/1/2007 53.00 34.50 34.50 44.50 Min Fk-SW composite 1/1/2007 53.00 34.50 44.50 44.50 Min Fk-SW composite 1/1/2007 155.0 10.00 34.50 44.50 Min Fk-SW composite 1/1/2007 155.0 10.00 14.50 14.50 Min Fk-SW composite 1/1/2007 155.0 10.01 14.50 14.50 Min Fk-SW composite 1/1/2007 155.0 10.01 14.50 12.50 12.50 12.50 12.50 12.50 12.5	64.50 0.303	3.10	0.31	0.040	4.02	0,60	0.14	0.01	00'0	4.67 #	0.14 #	0 013
Minr Fk-SW composite * 1/20/2006 11.100 35.00 44.50 Minr Fk-SW composite * 1/16/2007 95.25 24.50 32.00 44.15 Minr Fk-SW composite * 1/16/2007 95.25 24.50 32.00 44.15 Minr Fk-SW composite * 1/16/2007 95.25 24.50 31.00 41.55 Minr Fk-SW composite * 2/14/2007 53.50 10.61 10.10 41.55 Minr Fk-SW composite * 2/14/2007 E. coli, 155, 10.616/16/17 10.61 11.61 41.55 Minr Fk-SW composite * 2/14/2007 E. coli, mg/L MIU mg/L sc.colo, mg/L sc.colo, 41.56 Minr Fk-SW composite 1.02.12.20 1.03 3.00 3.00 40.50 92.00 56.01 42.50 92.10 92.00 56.01 92.00 56.00 92.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	55.50 0.213	4.21	0.44	0 046	3.46	0.37	0.09	0.07	0.02	5.60 #	0 11 #	0.015
Min Fk-SW composite In <i>Lauru</i> Discussion Subsolution	44 50 0 198	3.48	0.19	0,040	2.75	0.43	0.10	0.01	0000	4.43 #	0.10 #	0 013
Min Fk-Stv compositie 214/2001 214/2001 53.30 32.00 41.55 Mountain Fork Total Caliform, E. coli, mg/L TSS, Turbidity, Total Alkalinity, Total Hardness, Rateficies 1613/46 25.00 41.50 41.50 Mountain Fork Total Caliform, E. coli, mg/L TSS, Turbidity, Total Alkalinity, Total Hardness, Rateficies 1613/46 25.00 32.00 41.50 Maranee 1.613/46 2.276 5.23 380 50.23 50.00 82.00 Max 2.413.60 1.01.40 1.000 5.00 3.10 5.00 2.01 2.33 Max 2.413.60 1.01.40 1.000 5.00 3.10 5.00 2.01 2.30 5.00	242 UU 242 U 242 U 242	AT F	9T.0	040 0	1.41	0.26	0.06	10.0	000	4 62 #	* * 90.0	6100
Mountain Fork Baseline summary statistics Total Coliform, Colony/100 mL E coli, mg/L TSS, mg/L Turbidity, mg/L Total Alkalinity, mg/L as GaCO, mg/L as GaCO, mg/	41.50 0.150	00 8	0.24	0.066	2.08	0.37	0.08	0.01	000	# 96 #	# 60.0	0.022
Mountain Fork Baseline surmary statistics Total Coliform, Satistics E. coli, mg/L TSS, mg/L Turbidity, mg/L Total Alkalimity, mg/L Total Hardness, SG12 Baseline surmary statistics Lolony100 mL Colony100 mL Colony100 mL Colony100 mL Colony100 mL SG13 SG12 SG12 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Average 1,613,46 22 76 5.29 3.80 50.26 56.17 Average 1,72.20 1.00 5.00 1.90 28.00 40.00 Min 1,72.20 1.01 5.00 1.90 28.00 40.00 Main 2,419,60 13.90 5.00 3.10 50.00 54.00 54.00 Mean 2,419,60 13.91 5.00 3.10 50.00 54.00	rdness, Total CaCO ₃ Phosphorous, mo/L	TOC, mg/L	Total litrogen, Ort ma/l.	:hophosphate, mg/L	Chloride, mg/L	Nitrate, mg/L	Nitrate as N,	litrite, N mg/L	ttrite s N, SL	ilfate, NC ng/L	-20N-E	Ortho-P-P
Min 172.20 1.00 5.00 1.90 28.00 40.00 Max 2,413,60 10.14,40 10.00 9.00 56.00 54.50 74.00 54.50 74.0	56.17 0.038	222	0.18	0.038	3.67	0.48	0.11	0.04	0.01	5.83	0.17	0.01
Max Z,413,60 101,40 1000 900 76.00 82.00 Median Z,413,60 113,90 5.00 3.10 5.00 54.00 54.00 SD Junyi51 Z/33 J.04 2.91 12.00 5.00 54.00 54.00 SD Junyi51 Z/33 J.04 2.97 12.20 12.30 Stath Stele J.001/51 Z/38 5.00 3.10 5.00 <td< td=""><td>40,00 0,020</td><td>0,40</td><td>0.05</td><td>0.010</td><td>1 60</td><td>0,08</td><td>0.02</td><td>0.01</td><td>00.0</td><td>4.32</td><td>E0'0</td><td>0000</td></td<>	40,00 0,020	0,40	0.05	0.010	1 60	0,08	0.02	0.01	00.0	4.32	E0'0	0000
Metalant Z.A13.00 2.713.0 2.73.0 2.79.0 2.00.0 3.00.0 3.00.0 3.00.0 3.00.0 3.00.0 3.00.0 3.00.0 3.00.0 3.00.0 3.00.0 3.00.0 3.00.0 3.00.0 3.00.0 3.00.0 3.00.0 3.00.0 3.00.0 3.00.0 2.30.0 6.200.0 6.200.0 6.200.0 6.200.0 6.200.0 6.200.0 6.200.0 6.200.0 6.200.0 6.200.0 2.30.0 2.30.0 2.30.0 2.30.0 2.30.0 2.30.0 6.200.0 2.30.0 2.30.0 2.30.0 6.200.0 2.30.0 6.200.0 2.30.0 2.30.0 2.30.0 6.200.0 2.30.0 6.200.0 2.30.0 2.30.0 2.30.0 6.200.0 2.30.0 <td>82 00 0 110</td> <td>5 70</td> <td>0.35</td> <td>0.061</td> <td>12.75</td> <td>1.99</td> <td>0.45</td> <td>0.16</td> <td>0.05</td> <td>12.30</td> <td>0.97</td> <td>0.02</td>	82 00 0 110	5 70	0.35	0.061	12.75	1.99	0.45	0.16	0.05	12.30	0.97	0.02
75th Scile 2,13,60 3,10 5,00 3,10 5,00 6,200 75th Scile 2,13,60 3,10 5,00 3,10 5,900 6,200 Returns 12,00 12,00 31,00 5,00 5,300 5,400 74,300 74	24,00 U.U25 11 53 51	151	5T 0	0.040	1 5 5	0.50	200	70 0	10.0	500	01.0	10'0
Count 12.00 12.00 12.00 31.00 5.00 23.00 24.60 74.00 31.00 24.00 31.00 24.50 73.10 74.00 31.00 24.60 31.00 24.60 31.00 24.60 31.00 31.00 24.50 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00	62.00 0.040	2 70	0.23	ES0 0	3.64	0.49	50 D	0.03	20.0	6 20	6T 0	0.02
With skile 2,419,60 36,88 5,00 6,64 65,60 74,00 Geomean Contrain Fork Total Coliform, E. coli, TSS, Turbidity, Total Alkalinity, Total Hardness, storm water Storm water Storm water Store water	23 00 32 000	32.00	15 00	32,000	31.00	22.00	22,00	23.00	23.00	22 00	31 00	32.00
Mountain Fork Total Coliform, E. coli, TSS, Turbidity, Total Alkalinity, Total Hardness, storm water colony/100 mL Colony/100 mL Colony/100 mL accol, mg/L NTU mg/L as GaCO3	74.00 0.080	5,43	0,33	0.060	5.67	0,82	0,19	0,16	0.05	66 9	0.31	0.02
Mountain Fork Total Lotiform, E. coll, TSS, Turbidity, Total Identinity, Total Identifications, Rummany statistics Colony/100 mL Colony/100 mL Colony/100 mL Solon, Solon, </td <td></td> <td>1</td>												1
Autoriante variantes a sub- Autoriante a sub- Muna 0.00 0.00 5.00 0.00 24,50 31.00 Muna 0.00 0.00 24,50 31.00	rdness, Phosphorous, CaCO ₃ mo [/] l	TOC, mg/L	Total litrogen, Ort moli	:hophosphate, mg/L	Chloride, mg/L	Nitrate, mg/L	Nitrate as N,	litrite, N mg/L	hrite Su s N, Su	ilfate, NC ng/L	3-NOZ-	Ortho-P-P
Min 0.00 0.00 5.00 0.00 24.50 31.00	1710 0152	00.0	0.10	0.063	6.36	VED	0.00		18/1	C 07	000	000
	31.00 0.020	2,81	60'0	0.040	149	0,15	0.03	0.01	000	3.75	000	10.0
Max 0.00 0.00 111.00 0.00 50.00 77.00	57 00 0 303	4.49	0.44	0.095	21.67	0,60	0.14	0.07	0,02	9.57	0,14	0.03
Median #NUMI #NUMI 53.50 #NUMI 45.00 52.50	52.50 0.198	3,19	0.20	0.046	4.02	0.37	0,08	D,01	0.00	5.36	0'0	0.02
SU PUV/UI #UV/UI	1900 ST 51	24.0	60.0	1000	5.68	0.12	60.0	0.02	10.0	190	E0 0	10.0
Caute and a contract and a contract a contra	000 11 000 11	11 00	11 00	T90'0	10.11	040 11 00	0.09	E010	TOD		010	2010
90th Kelle winum anumi 102.92 anumi 45.50 54.50	64.50 0.273	421	15.0	0.07	64-1	0.44	010	E0'0	100	9.23	0.11	0.02
				ſ								

The Upper Les Creek Grab 2.3,30 603 ULG Grab 5.7,15 785 Upper Les Creek Grab 5.7,15 785 Upper Les Creek Grab 5.7,15 531 Upper Les Creek Grab 5.7,15 532 Upper Les Creek Grab 5.7,25 531 Upper Les Creek Grab 5.7,27 532 Upper Les Creek Grab 5.7,27 541 Upper Les Creek Grab 5.7,27 541 Upper Les Creek Grab 5.7,27 542 Crab 5.7,17 543 1.7,17 5.7,27 544 Crab 5.7,17 545 Upper Les Crab 1.7,172 545 Upber Les Crab 1.7,172 545 Upber Les Crab 5.7,172													шg/г	-	mgr			(cfs) TS	S th/day	Ib/day N	Ib/day Ort
756 Upper Lee Grab 5 3/22/3 280 GRAD ULC 5 4/72/3 280 GRAD ULC 5 4/72/3 291 Upper Lee Creek Grab 5 6/50/3 191 Upper Lee Creek Grab 5 9/22/3 191 Upper Lee Creek Grab 5 9/22/3 191 Upper Lee Creek Grab 5 9/22/3 101 Upper Lee Creek Grab 5 9/22/3 101 Upper Lee Creek Grab 5 1/1/8/2 101 Upper Lee Creek Grab 5 1/1/8/2 102 Upper Lee Creek Grab 5 1/1/8/2 103 Upper Lee Creek Grab 5 1/1/8/2 104 Upper Lee Creek Grab 5 1/1/8/2 102 Upper Lee Creek Grab 5 1/1/8/2	306	×	5.00 6.00		00.05	46,00 <	0.020	2.71 <	> 00.1	0.060	4.74	0.32	0.07 <	0.03 ×	10.0	0.08	6,43	2 10	86 92 3001 47	0.23	0.92
290 GRAB ULC 4/12/3 281 Upper Lee Creek Grab b 6/72/3 281 Upper Lee Creek Grab b 6/72/3 281 Upper Lee Creek Grab b 9/22/3 183 Upper Lee Creek Grab b 9/22/3 193 Upper Lee Creek Grab b 9/22/3 193 Upper Lee Creek Grab b 9/22/3 194 Upper Lee Creek Grab b 1/1/9/2 195 Upper Lee Creek Grab b 1/1/9/2 104 Upper Lee Creek Grab b 1/1/9/2 009 Upper Lee Creek Grab b 1/1/9/2 004 Upper Lee Creek Grab b 1/1/9/2	900		200		UU CE	40.00	0.350	118	0.45 c	0.060	14 5	01 O	V 01 0		TO'O	STO	551	176.00	19 2065	14/ 08	10 00 01
Sign Upper Lee Creek Grab Se 6670 Opper Lee Creek Grab 9/22/22 Opper Lee Creek Grab 9/22/22 101 UPPer Lee Creek Grab 9/22/22 101 UPPer Lee Creek Grab 9/22/22 101 UPPer Lee Creek Grab 1/1/8/22 101 UPPer Lee Creek Grab 1/1/8/22 103 UPPer Lee Cr Grab 1/1/8/22 104 UPPer Lee Cr Grab 1/1/8/22 104 UPPer Lee Cr Grab 1/1/8/22 104 UPPer Lee Cr Grab 1/1/2/22 104 UPPer Lee Cr Grab 1/1/1/22 104 UPPer Lee Cr Grab 1/1/1/22 104 UPPer Lee Cr Grab 1/1/1/22	306		5 00		36 00	40.00	0.030	1 49 <	> 50.0	0.060	3.27 <	0.05 <	> 10 0		100	6T n	965	T 00 68	2210 65	DC BLC	0 08 0
2029 Upper Lee Creek Grab b 9/222X 1931 Upper Lee Creek Grab b 9/28/2 1011 UppeR Lee Creek Grab b 1/18/27 765 Upper Lee Cr Grab b 1/18/27 699 Upper Lee Cr Grab b 1/18/27 603 Upper Lee Creek Grab b 1/18/27	106	v	5.00			46.00 <	0 020	1.62	0.10 <	0.040	2.04	E2 0	0.05 <	0,01 <	0,00	0.06	5 11	491,00 2	0474 05	52.91	147 88 (
1431 Upper lace creates Grab b 972/02 101 Upper lace creates b 11/03/02 176 Upper lace creates b 11/03/02 177 Upper lace creates b 11/03/02 170 Upper lace creates b 11/03/02 170 Upper lace creates b 11/03/02	006	×	5,00		58.00	54,00	0 020	1.98	0.17 <	0.040	1.88	0,51	0,12	0,01	00'0	0,12	6,60	71,00	2960 05	7,65	45.58 0
101 UPPER LEE UPPER LEE UPPER D 11/022 765 Upper Lee Cr Grap D 12/720 009 Upper Lee Cr Grap D 1/22/20 003 Upper Lee Cr Grap D 1/18/20 003 Upper Lee Cr Mek Grab D 2/15/20	006		11 43		48 00	56.00 <	0 020	1,87	> 0,10 <	0,040	2,17	0.20	0.05 <	0,01 <	0.00	0 05	5,98	109 00 1	0389.91	11,75	28 32 (
102 Upper Loss Cristian b 1/12/20 450 ULC Grab b 1/12/20 451 ULC Grab b 1/18/20 043 Upper Los Criest Grab b 2/15/20	00	* *	00.5		32.0U	76.00	0.040	2 11 2	> 12.0	0.040	2 16 <	0 59	> 510	0,01 <	000	0,14	4,94	E 00 111	12400 25	167,45	572 55 0
450 ULC Grab b 1/18/20 043 Upper Lee Creek Grab b 2/15/20	20		2 00		22 00	26.00	0.030	1 21	0.13 <	0.040	1.99	050	> 7T'n	> TO 0	0.00	21.0	6C.4	441.00 3	20,2555,0	12 041	CT TA7
043 Upper Lee Creek Grab b 2/15/20	200		9,00		20.00	24 00	0.030	2 08	0 25 <	0.040	1.67	0,79	0.18 <	> 10,0	00.00	0,18	4.28	992.00 7	4458 87	160.34	974 84
	200		S.00				0 020	131	0,20 <	0.040	1,65	0,84	0.19 <	> 10'0	00'0	0,19	4,48	1140.00 4	7537,35	122.84 1	181 32 (
1451 Upper Lee Cr. b 12/7/2	010 1553 10	43.20 <	5 00	1.50	26 00	32 00 <	0.020	1.56	0.27 <	0.061	8,20	0.84	> 61,0	0 16 <	0,05	0.24	7.70	58.00	2417 95	6,25	75.00 (
1451 Upper Lee Cr. b 12/1/2	010		5,00			v	0.02	1.56	v	0.02	8,20					0 19					
2017 100000 100 C1 2017 10 2017 10 2017 10 2017 10 2017 10 2017 10 2017 10 2017 10 2017 10 2017 10 2017 10 2017	09.6T67 < TTO	> NF 17		00 21	70 00	> 00 87	0.02	1 00	> 9/ 0	190'0	2 00	2 66	> 09'0	0 15 <	0.05	0.65	6.90	428.00 1	7846,95	46.12 1	498.84 0
1395 Upper Lee Cr. b 5/18/2	011 1986.30	13 20 4	5.00	6.60	22.00	36.00	0.040	3 01	010 <	0.061	2 0 C E	0.22 <	0.05 <	D 16 <	0.05	0.10	0 P D	00.005	35 FT 10	47 41	118 53
1795 Upper Lee Cr. b 5/18/20	011		5.00				0.04	3 01	v	0.02	3.20			2	*	0.05	8	00 077	00 0140		CONT
034 Upper Lee Cr. b 12/13/2	2011 461 10	9.70 +	5.00	2.70	20.00	24.00 <	0.020	1 20	NA	0 061	3,80	3 32	> 52 0	0 16 <	0.05	0.80	6 90	506,00 2	1099,55	54.52 2	180.92 0
034 Upper Lee Cr. b 12/13/2	2011	v	5,00			v	0.02	1 20		0.02	3,80					0.75					
167 Upper Lee Cr. b 2/22/2	012 686 70	1 00	00	5.80	16 00	22,00 <	0 020	0.99	0.51	0.123			4.	0 02 <	0.01	10.0		293_00	-0.65	31 57	7 89 0
The second se	210	* *	00 5			~	70"0	159		100	D7 6					20.00					
attel Upper Lee Cr. b 10/23/2	210		200 5			v	20.0	2.85		100	24 JE					90 D					
744 Upper Lee Cr b 2/5/20	EII		ς Γ			v	0 02	1 18		0.01	11.51					0 59					
475 Upper Lee Cr. b 4/30/2	013	*	S			v	0,02	0.76	v	0.01	3.57					0 114					
Upper LC-SW comp 8 2/2/20	06		14,99		48 00	42.00	0 021	4 28	1 00	0.060	3,94	0.55	0.12	0.03	0.01	0.13	5.33	1 80	224,31	0 20	1 28 0
Upper LG-SW comp s 3/14/20	306 20		16.36		57 50	62,00	0 053	3.43	0,19	0.060	4 83	0.25	0.06	EOO	10.0	0.07	12,53	148.00 2	0186,66	41,86	52.94 0
	90		5/*/			45.5U	C111	105	0.24	0,060	5 05 2 00	0.05	20.0	E0 0	10.0	60.0	1.27	414 00 2	6758,24	903.35	205 28 C
Upper LC-SW comp 6 6/4/20	06		34 07		45 50	47 50	0 140	138	66.0	0.153	2.36	0.65	0.15	0.32	010	0.24	5.05	45 00 1	0784.89	20 CD C27	58.90
Upper LC-SW comp g 9/18/20	106		284 50		44 50	49.00	0.558	3,49	0.29	0.054	2 45	0.73	0.17	0.01	0,00	0.17	5,56	963 00 228	4938,34	2892 48	881.84 0
Upper LC-SW comp a 9/23/20	306		138,12		36,50	49,00	0,363	9,70	0,31	0.040	1.75	0.61	0.14	0.01	00'0	0,14	5,05	280.00 147	4484 67	2499 86	964.61 C
Upper LC-SW comp a 11/6/20	306 206		69-50		31.00	34,50	0 153	3.94	0,25	0.070	2 40	0.51	0.12	0.01	00'0	0,12	4,83 4	210.00 238	2278,65	3376.84 2	643.72 0
Upper LC-CVV comp 3 12/20/2	006		C7 C4T		00 61	28.50	8000	40 F	0.18	0.000	1 73	0.25	10.06	100	0.00	0.06	0 00 0	2501 00 T06/9	51/4 UU	E 2C.6/CO.	1 10 220
Upper LC-SW comp 8 1/13/20	200		162 25		17 50	24 50	0.278	2 83	0.25	0.040	1 44	0.64	0.14	0.01	0.00	0.15	5 99 E	150.00 1238	1459.10	L 68 629E	UE CEC
Upper LC-SW comp s 2/13/20	207		38.00		14 00	25.50	0,125	2.25	0,21	0.040	1 78	0.55	0.12	10'0	00 0	EL 0	11.15 3	113 00 073	1403 75	2404 23 2	435,11 0
															and the second						
Upper Lee Cree Reseline summa	Total Coliform,	E. coll,	TSS,	Turbidity, Tota	I Alkalinity, Total	Hardness, Phos.	phorous.	TOC,	trogen.	phosphate,	Chloride,	Nhrate,	Nitrate as N.	Nitrite,	NITTLE N	ZON-ED	Sulfate, USG	charge	Phy	suborus NO	-NO2-
statistics	Colony/100 mL	Colony/100 mL	MB/L	NTU mg	/Las caco, mg/	L as CaCO3	mgn	щð,Г	ngl	mg/L	mg/L	mg/L	mg/L	mg/L	1/Am	N (mg/L)	mg/t	(cfs) TS	yeb/day	Ib/day N	Ib/day Ort
Averago	1421.36	17.68	5.46	5.72	30.40	36,63	0:050	1.80	0:30	0.042	5.28	0.82	0,19	0,05	0,02	0.27	5.84	405 59 1	8522,68	60 96	474 52
Min	461 10	1.00	2 00	150	16 00	22.00	0.020	0.76	0,05	0.010	1.65	20.0	0.01	0.01	0,00	10.0	4 28	2 10	-0.65	0.23	0.92
Max	1653 10	07 56	500	12.00 5.80	26.00	00.95	0.020	105	1.00	671-0	30-70 3 20	3.32	6/ D	910	20/0	15	5 07 I	1 00 00 EBC	18 8544	518 50 2	147 00
20	835.89	16.02	1.49	4 10	11.86	11.04	0.089	0.64	0.26	0.025	7.02	68.0	0.20	0.07	10.02	0.28	1 19	1 82.92E	100001	12 84	51 13
75th %tile	1986 30	21.30	5 00	6.60	37.00	46.00	0.030	2.10	0.35	0.060	4.74	0.81	0,18	0.03	0.01	0.40	6.68	506.00 2	1099.55	147.08	575.78
Count	5,00	5 00	25 00	5.00	15 00	16.00	26,000	26,00	16 00	26 000	25,00	16,00	16,00	17,00	17,00	26,00	16.00	17,00	17 00	17 00	17 00
90th %tile Geomean	2246.28	34.44	2 60	9.84	44,80	20.00	0.040	2.78	0.63	0.061	8.20	1.75	0,40	0,16	0.05	0,70	7,30	951,80 4	2158.05	163 18 1	EE 808
Upper Lee Cree	1k Total Coliform,	E coli,	TSS,	Turbidity, Total	I Alkalinity, Total	Hardness, Phoe	Total	TOC,	Total Orthol	phosphate,	Chloride,	Nitrate,	Nitrate	Nitrite,	Nitrite N	CON-EO	Sulfate, dis	S daily	Ph	Total suborus NO:	LND2-
Strom Water	Colony/100 mL	Colony/100 mL	mg/L	NTU mg	/Las CaCO3 mg/	L as CaCO ₃	The	mg/L	Tigm	n/βm	mg/L	ug∕L	as N,	mg/L	as N,	N (mg/L)	mg/L	(cfs) TS	S (b/day	Ib/day N	b/day Ort
Average	i0//JIC#	i0//\I0#	79.31	#DIV/0!	33 71	39.17	0.217	3,22	0.30	0 060	2.57	0.45	0,10	0.04	0.01	0.12	6.21 2	697.57 259	6731.82	3629 55 1	582.97
Mun	200	000	C/-/	0.00	14.UU 57.50	12.452 00 c3	0.021	CUL BC N	20.0	0.04U	1.44 A 0.3	0.05	10.0	10.0	0.00	20.0	0 E3 C1	1.80 1739	224.31	0.20	82 T
Median	WIN#	HNUMI	EO 9E	IMUM#	34 50	39.75	0.146	3.41	0.24	0 057	2.38	0.53	0.12	0.01	000	0.12	1 61 5	121 50 105	8486 40	1661.48	DC 2C3
8	I0//JU	#DIV/0F	85.57	#DIV/01	13 83	11.72	0.170	0.71	0.24	160 0	1.07	0.21	0.05	60.0	0.03	0.06	2 81 3	275 74 422	6415.69	5538 70 2	116 68
75th %tile	#NUM!	#NUM!	139.40	#NUM!	44 75	47 88	0.355	3,74	0.29	0 060	2,92	0.61	D.14	0.03	0.01	0.14	6 22 3	720,00 230	9273 42	3013 57 2	187 26
Count	000	0 00	12 00	0,00	12.00	12 00	12 000	12,00	12.00	12 000	12,00	12,00	12.00	12 00	12.00	12 00	12 00	12.00	12 00	12 00	12.00
200 2006	INUM	WINNE	100.55	IWINA	41.15	49.00	0,401	565	85.0	6000	3.97	0.05	0.15	50'0	torn	0.17	10.75 8	268.00 902	2024.41	5666677	24.55

e Date Total Coliform, E. coli, TSS, Turbidity, Total Alkalinity, Total Hardness, Total Total Total Total Orthophosphate, Type Collected Colony/100 mi Colony/100 mi me/l action, action, action, action	Date Total Coliform, E. coli, TSS, Turbidity, Total Alkalinity, Total Hardness, Total Total Total Orthophosphate, Colore-ded Colorev/100 mi Colorev/100 mi mo/i ac CaCO. mo/i ac CaCO. mo/i ac CaCO. Plosphoreus, TOC, mg/L Nitrogen,	Total Coliform, E. coli, TSS, Turbidity, Total Alkalinity, Total Hardness, Total Coliform, E. coli, TSS, Turbidity, Total Alkalinity, Total Hardness, Total C. mg/L Nitrogen, Total Orthophosphate, Colonv/100 mi me/l as CaCO, me/l as CaCO, Phosphorous, TOC, mg/L Nitrogen, 2000, 2	E. coli, TSS, Turbidity, Total Alkaliinity, Total Hardness, Poosphoreus, TOC, mg/L. Nitrogen, 2000 Colomy/100 mi me/l NTI me/l as CarC2, me/l as CarC2, Phosphoreus, TOC, mg/L. Nitrogen, 2000.	Total Total Orthophosphate, Total Nithophosphate, Total Orthophosphate, Total Orthophosphate, TOC, mg/L Nitrogen, مسرا	Turbidity, Total Alkalinity, Total Hardness, Total NTU me/Last CarCh. me/Last act.arCh. Phosphorous, TOC, mg/L Nitrogen.	tial Alkalinity. Total Hardness, Prosphorous, TOC, سوال. Nitrogen, محمد الموالية ا محمد الموالية الموالي	fotal Hardness, Total Total Total Orthophosphate, me/i scf.acr., Phosphorous, TOC, mg/L Nitrogen,/	Total Total Orthophosphate, Phosphorous, TOC, mg/L Nitrogen, Orthophosphate,	Total Orthophosphate, 2, mg/L Nitrogen,	Total Orthophosphate, Nitrogen,	thophosphate,		Chloride,	Nitrate,	Nitrate as N,	Nitrite,	Nitrite as N,	Sulfate,	-20N-EON	
r Collected Colony/100 mL Colony/100 mL mg/L NTU mg/L as CaCO3 mg/L mg/L mg/L mg/L	Collected Colony/100 mL Colony/100 mL mg/L NTU mg/Las CaCo3 mg/L as CaCo3 mg/L mg/L mg/L	Colony/100 mL Colony/100 mL mg/L NTU mg/Las cacco, mg/Las cacco, mg/L mg/L mg/L	Colony/100 mL mg/L NTU mg/Las CaCo ₃ mg/L as CaCo ₃ mg/L mg/L	mg/L NTU mg/Las caco, mg/Las caco, mg/L mg/L	NTU mg/L as caco, mg/L as caco, mg/L mg/L	ng/L as caco3 mg/L mg/L mg/L	mg/L as caco ₃ mg/L mg/L	mg/L mg/L	mg/L	mg/L		J/J	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	-70N-FOR	0
Tr b 6/18/2002 > 2419/60 8.60 < 5.00 44.00 < 0.030 3.30 < <	6/18/2002 > 2419.60 8.60 < 5.00 40.00 44.00 < 0.030 3.30 <	> 2419.60 8.60 < 5.00 40.00 44.00 < 0.030 3.30 <	8.60 < 5.00 40.00 44.00 < 0.030 3.30 <	5.00 40.00 44.00 < 0.030 3.30 <	40.00 44.00 < 0.030 3.30 <	40 00 44 00 < 0 030 3 30 <	44.00 < 0.030 3.30 <	< 0.030 3.30 <	3.30 <	v		0.030	3.06	0,08	0.02 <	> 10 0	00'0	4.72 #	0.02 <	0.01
Image: Constraint of the state	1/11/2002 > 2413-60 < 1.00 < 5.00 48.00 52.00 0.050 1.80 1.80 1/11/2002 > 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	> 2419.64 1.00 5.00 48.00 52.00 0.056 1.80	48.00 52.00 0.050 1.80 310 5.00 0.050 1.80 40.00 0.050 0.05 40.00 0.050 40.00	5.00 48.00 52.00 0.050 1.80	48.00 52.00 0.050 1.80	48.00 52.00 0.050 1.80	52.00 0.050 1.80	0.050 1.80	1.80			0.039	3,64	0.11	0.03 <	0.01 <	00.00	4,19 #	0'03 #	0,013
			19.70 < 5.00 12.00 20.00 < 0.030 0.97	5.00 12.00 20.00 < 0.030 0.97	12.00 20.00 < 0.030 0.97	12.00 20.00 < 0.030 0.97	20.00 < 0.030 0.97	CC12 0010	0.97	,		0.065	5.87	1.81	0.41 <	> 10.0	0.01	> 55.4 # 04.7	0,01	010,0
Tr b 6/30/2003 > 2419.60 8.60 < 5.00 42.00 48.00 < 0.030 1,37 <	6/30/2003 > 2413-60 8.60 < 5.00 42.00 48.00 < 0.030 1.37 <	· > 2419.60 8.60 < 5.00 42.00 48.00 < 0.030 1.37 <	8.60 < 5.00 42.00 48.00 < 0.030 1.37 <	5.00 42.00 48.00 < 0.030 1.37 <	42.00 48.00 < 0.030 1.37 <	42.00 48.00 < 0.030 1.37 <	48.00 < 0.030 1.37 <	< 0.030 1.37 <	1,37	*		0.040	2.85	0.13	> 60.0	0.02 <	0.01	4.26 #	0.04	0.013
5.c b 2/25/2004 307,60 9,70 < 5,00 32,00 48,00 < 0.020 1,30 €	2/25/2004 307,60 9,70 < 5,00 32,00 48,00 < 0.020 1.30 ×	: 307,60 9,70 < 5,00 32,00 48,00 < 0.020 1,30 <	9.70 < 5.00 32.00 48.00 < 0.020 1.30 <	5.00 32.00 48.00 < 0.020 1.30 ×	32.00 48.00 < 0.020 1.30 ×	32,00 48,00 < 0.020 1.30 <	48.00 < 0.020 1.30 <	< 0.020 1.30 K	1.30 <	v		0.050	3.62	0.64	0.14 <	> E0.0	0.01	5.11 #	0.15 <	0.016
2rc b 8/24/2004 ≻ 2419,60 5,20 < 5,00 46,00 48,00 0,040 1,62 ≪	8/24/2004 > 2419,60 5,20 < 5,00 46,00 48,00 0.040 1.62 <	1 > 2419,60 5,20 < 5,00 46,00 48,00 0.040 1.62 <	5.20 < 5.00 46.00 48.00 0.040 1.62 <	5,00 46,00 48,00 0.040 1.62 <	46.00 48.00 0.040 1.62 <	46.00 48.00 0.040 1.62 <	48,00 0.040 1.62 <	0.040 1.62 <	1.62	×		0.050	3.35	0,19	0.04 <	0,03 <	0.01	4.02 #	0.05 <	0.016
cr. b 5/10/2005 > 2419,60 14.40 < 5,00 38.00 48.00 < 0.020 2.10 <	5/10/2005 > 2419,60 14.40 < 5.00 38.00 48.00 < 0.020 2.10 <	i > 2419.60 14.40 < 5.00 38.00 48.00 < 0.020 2.10 <	14.40 < 5.00 38.00 48.00 < 0.020 2.10 <	5.00 38.00 48.00 < 0.020 2.10 <	38.00 48.00 < 0.020 2.10 <	38.00 48.00 < 0.020 2.10 <	48.00 < 0.020 2.10 c	< 0.020 2.10 ×	2.10 <	v		0 060	2,96	0,34	0.08 <	0.03 <	0.01	4.63 #	> 60 0	0.020
C b 12/2010 155310 3730 < 5.00 4.90 14.00 18.00 0.060 1.43 0.28 €	12/2/2010 1553.10 37.30 < 5.00 4.90 14.00 18.00 0.060 1.43 0.28 <	0 1553.10 37.30 < 5.00 4.90 14.00 18.00 0.060 1.43 0.28 <	37.30 < 5.00 4.90 14.00 18.00 0.060 1.43 0.28 <	5.00 4.90 14,00 18,00 0.060 1.43 0.28 c	4.90 14.00 18.00 0.060 1.43 0.28 c	14.00 18.00 0.060 1.43 0.28 c	18.00 0.060 1.43 0.28 <	0.060 1.43 0.28 <	1.43 0.28 <	0.28 <		0.061	5,30	0.84	0.19 <	0,16 <	0.05	6.40 #	0.24 <	0,020
r b 21/5/211 648.80 49.60 < 5.00 7.40 10,00 16,00 0,050 1.50 0.42 <	2/16/2011 648.80 49.60 < 5.00 7.40 10.00 16.00 0.050 1.50 0.42 <		45.0 < 5.00 7.40 10.00 16.00 0.050 1.50 0.42 <	5.00 740 10,00 16,00 0,050 1,50 0,42 <	7,40 10,00 16,00 0,050 1,50 0,42 <	10,00 16,00 0,050 1,50 0,42 <	16.00 0.050 1.50 0.42 <	0.050 1.50 0.42 <	1.50 0.42 <	0.42 <		0.061	5.90	1 59	0.36 <	0,16 <	0.05	7.40 #	0.41 <	0.020
	2/16/2011 2412960 $51.20 5.300 8.30 14,00 16.00 < 0.020 3.04 0.14 < 0.0000$				8.30 14,00 16,00 < 0,020 3,04 0,14 < 0	14,00 15,00 < 0,020 3,04 0,14 < 0	16.00 < 0.020 3.04 0.14 < 0.		3.04 0.14 < 0	0.14 < 0	0	190	2.60 <	0 22 <	0.05 <	0,16 <	0.05	5.30 <	0.10	0.020
-1 b $1/2/4/2011$ d delta $1/30$ < 5,00 2,40 10,00 16,00 < 0.020 1.50 NA < 0.020 10.00 10.00 10.00 10.00 0.00 0.00	12/14/2011 461,10 1/30 < 5,00 2,40 10,00 15,00 < 0,220 1,50 NA < 0,0	1 451,10 17,30 < 5,00 2,40 10,00 16,00 < 0,020 1,50 NA < 0,020 1.50 NA < 0,020 1,50 NA < 0,020	1/30 < 5,00 2,40 10,00 15,00 < 0.20 1,50 N < 0.	5,00 2,40 10,00 16,00 0,020 1,50 NA < 0,	Z40 10,00 15,00 < 0.020 1,50 NA < 0.	10/00 16.00 < 0.020 1.50 NA < 0.	16.00 < 0.020 1.50 NA < 0		1.50 NA < 0.	NA < 0	0	031	4.00	6.64	1.50 <	0.16 <	0.05	6.60 #	1.55 <	0.010
					0 \$ 65'0 07'T 020'0 \$ 00'T 00'0T 04'Z	0 \$ 65'0 0/'T 070'0 \$ 00'7T 00'0T		0 > 65°0 0/17 070°0 3	0 > 65"0 0/"T	0 > 65.0	0	150			v	0.02 <	10.0		v	0 010
r b 12/22010 < 5,00 0,02 1,43 < 0,02	1//2/2010 < 5.00 0,060 1.43 < 0.02	< 5,00 c).050 1.43 c 0.02	< 5,00 c.02 c.02 c.02 c.02 c.02 c.02 c.02 c.	5,00 0,050 1.43 < 0,02	0,060 1.43 < 0.02	0,060 1.43 < 0.02	0,060 1.43 < 0.02	0,060 1,43 < 0,02	1.43 < 0.02	< 0,02	0,02		5.30						0.19	
r b 2/16/2011 < 5,00 0.02 1.50 < 0.02	2/15/2011 < 5,00 0.050 1.50 < 0.02	< 5,00 0.050 1.50 < 0.02	< 5,00 c 0,02 1,50 c 0,02	5,00 0.050 1.50 < 0.02	0.050 1.50 < 0.02	0.050 1.50 < 0.02	0.050 1.50 < 0.02	0.050 1.50 < 0.02	1,50 < 0,02	< 0,02	0,02		5.90						0.36	
5r b 5/18/2011 < 5,00 < 5,00 ≤ 0,020 3,04 < 0,02	5/18/2011 < 5,00 < 0,020 3,04 < 0.0	< 5,00 < 0,020 3,04 < 0.0	< 5.00 < 0.020 3.04 < 0.0	5,00 < 0,020 3,04 < 0.0	< 0.020 3.04 < 0.0	< 0,020 3,04 < 0.0	< 0.020 3.04 < 0.0	c 0,020 3,04 < 0.0	3.04 < 0.0	< 0.0	0.0	5	2.60					v	0.05	
5r. b 12/14/2011 < 5.00 < 5.00 < 0.020 1.50 < 0.0	12/14/2011 < 5,00 < 0,020 1,50 < 0,	1 < 5,00 < 5,00 < 0,020 1,50 < 0,0	< 5,00 < 0,020 1,50 < 0,0	5,00 < 0,020 1,50 < 0,0	< 0,020 1,50 < 0,0	< 0,020 1,50 < 0,0	< 0,020 1,50 < 0,0	¢ 0,020 1,50 < 0,0	1,50 < 0,0	× 0'0	0	11	4.00						1.50	
21, b 2/22/2012 < 5.00 ≤ 5.00 ≤ 0.020 1.70 ≤ 0.	2/22/2012 < 5.00 < 0.020 1.70 < 0.	c 5.00 c 5.00 c 0,020 c 1,70	< 5.00 < 0.020 1.70 < 0.	5.00 < 0.020 1.70 < 0.	 0,020 1,70 0 	 0.020 1.70 0. 	 0.020 1.70 0. 	0.020 1.70 < 0.	1.70 < 0.	v	0	01	4.00						0.52	
1° b 4/25/2012 < 5.00 0,030 1,56 < 0	4/25/2012 < 5.00 0.030 1.56 < 0	< 5.00	< 5.00	5.00 0.030 1.56 < 0	0,030 1.56 < 0	0,030 1.56 < 0	0,030 1.56 < 0	0.030 1.56 < 0	1.56 < 0	0 ×	0	01	2.94						0.08	
7. b 10/23/2012 < 5.00 < 5.00 < 0.020 1.85 < 0	10/23/2012 < 5.00 < 0.020 1.85 < 0	2 < 5,00 < 0,020 1,85 < 0	< 5,00 < 0,020 1,85 < 0	5,00 < 0,020 1,85 < 0	< 0,020 1,85 < 0	< 0,020 1,85 < 0	< 0.020 1.85 < 0	< 0,020 1,85 < 0	1.85 < 0	•	0	01	3.62						0.58	
Zr, b 2/5/2013 < 5,00 < 0,020 1,32 <	2/5/2013 < 5,00 < 0,020 1,32 <	< 5,00 < 5,00 < 0,020 1,32 <	< 5,00 < 0.020 1,32 <	5,00 < 0,020 1,32 <	< 0.020 1,32 <	< 0.020 1.32 ¢	< 0.020 1.32 <	c 0.020 1.32 c	1,32 <	v		0,01	5.41						0.77	
2r. b 5/1/2013 < 5.00 0.77 <	5/1/2013 < 5.00 0.77 <	< 5.00 0.040 0.77 <	< 5.00 0.040 0.77 <	5.00 0.040 0.77 K	0.040 0.77 <	0.040 0.77 <	0.040 0.77 <	0.040 0.77 <	0.77 ×	×		0,01	3.67						0,118	
Weber Creek Total Coliform, E. coli, TSS, Turbidity, Total Alkalinity, Total Hardness, hon-neurone TCC and Marcology 1 and 1 a	reber Creek Total Coliform, E. coli, TSS, Turbidity, Total Alkalinity, Total Hardness, <u>Phrenkaren Totan</u> Misson Ol	Total Coliform, E. coli, TSS, Turbidity, Total Alkalinity, Total Hardness, encontenents TOC and Missional O	E. coli, TSS, Turbidity, Total Alkalinity, Total Hardness, Total Total C.	TSS, Turbidity, Total Alkalinity, Total Hardness, Total Total O	Turbidity, Total Alkalinity, Total Hardness, Total O	tal Alkalinity, Total Hardness, Total O	otal Hardness, Total Total O	Total Total O	Total O	Total Nitrocor	Ŧ	nophosphate,	Chloride, 1	Vitrate, 1	Vitrate 22 M	hrite, N	Vitrite	Sulfate, I	103-N02-	24 20
essente summary Colony/100 mL Colony/100 mL mg/L NTU mg/Las CaCO, mg/Las CaCO, mapurous, IU-V, mg/L mg/L	ame summary colony/100 mL colony/100 mL mg/L NTU mg/Las CaCO, mg/Las CaCO, mg/L wrongen, gatatistics	colony/100 mL colony/100 mL mg/L NTU mg/Las CaCO3 mg/Las CaCO3 mg/L wrogen, 100, mg/L wrogen, mg/L	Colony/100 mL mg/L NTU mg/Las CaCO3 mg/Las CaCO3 mg/L mg/L mg/L mg/L mg/L	mg/L NTU mg/Las CaCO ₃ mg/Las CaCO ₃ ruspinorous, 100, mg/L mrogen, mg/L	NTU mg/Las CaCO ₃ mg/Las CaCO ₃ mg/L mg/L	g/Las CaCO ₃ mg/Las CaCO ₃ rucspriorous, LOC, mg/L mixogen, mg/L	ng/Las CaCO3 rijospinorous, LOC, mg/L wigogen, mg/L	riiospinorous, 100, ingrt. Mitrogen, mg/L	, төлс магодеп, төүс магодеп,	wicrogen, mg/L		mg/L	mg/L	mg/L	as N, mg/L		as N, mg/L	mg/L	z	Ortho-P-P
															5		6			
Average 1638.98 18.02 5.00 5.08 27.38 33.08 0.035 1.76 0.36	No. 16.38 18.02 5.00 5.08 27.38 33.08 0.035 1.76 0.36	1638.98 18.02 5.00 5.08 27.38 33.08 0.035 1.76 0.36	18,02 5.00 5,08 27,38 33,08 0,035 1,76 0,36	5.00 5.08 27.38 33.08 0.035 1.76 0.36	5,08 27,38 33,08 0,035 1,76 0,36	27.38 33.08 0.035 1.76 0.36	33.08 0.035 1.76 0.36	0.035 1.76 0.36	1.76 0.36	0.36		0,033	4,13	1.06	0,24	0.06	0.02	5,21	0,35	0.02
Min 195.60 1.00 5.00 2.40 10.00 12.00 0.020 0.77 0.14	195.60 1.00 5.00 2.40 10.00 12.00 0.020 0.77 0.14	195.60 1,00 5.00 2.40 10.00 12.00 0.020 0.77 0.14	1,00 5.00 2,40 10,00 12,00 0,020 0,77 0,14	5.00 2.40 10.00 12.00 0.020 0.77 0.14	2,40 10,00 12,00 0,020 0,77 0,14	10.00 12.00 0.020 0.77 0.14	12.00 0.020 0.77 0.14	0.020 0.77 0.14	0.77 0.14	0.14		0.010	2.60	0.07	0.02	0.01	00"0	4,02	0.02	0.01
Max 2419.60 51.20 5.00 8.30 48.00 52.00 0.100 3.30 0.59	2419,60 51,20 5.00 8,30 48,00 52,00 0,100 3,30 0,59	2419,60 51,20 5.00 8.30 48.00 52.00 0,100 3,30 0.59	51,20 5.00 8,30 48,00 52,00 0,100 3,30 0.59	5.00 8,30 48,00 52,00 0,100 3,30 0.59	8,30 48,00 52,00 0,100 3,30 0.59	48.00 52.00 0.100 3.30 0.59	52.00 0.100 3.30 0.59	0,100 3,30 0.59	3.30 0.59	0.59		0.065	6.87	6.64	1.50	0,16	0.05	7,40	1.55	0.02
Median 2419.60 9.70 5.00 4.90 32.00 44.00 0.030 1.53 0.35	an 2419.60 9.70 5.00 4.90 32.00 44.00 0.030 1.53 0.35	2419.60 9,70 5.00 4,90 32.00 44,00 0,030 1.53 0.35	9,70 5.00 4,90 32.00 44,00 0,030 1.53 0,35	5.00 4.90 32.00 44.00 0.030 1.53 0.35	4,90 32.00 44,00 0,030 1.53 0.35	32.00 44.00 0.030 1.53 0.35	44.00 0.030 1.53 0.35	0.030 1.53 0.35	1.53 0.35	0.35		0.030	3.67	0.28	0.06	E0'0	0.01	4,91	0.15	0.02
5D 943,69 17,08 0.00 2.75 15.65 16.34 0.020 0.65 0.20	943,69 17,08 0.00 2.75 15.65 16.34 0.020 0.65 0.20	943.69 17,08 0.00 2.75 15.65 16.34 0.020 0.65 0.20	17.08 0.00 2.75 15.65 16.34 0.020 0.65 0.20	0.00 2.75 15.65 16.34 0.020 0.65 0.20	2.75 15.65 16.34 0.020 0.65 0.20	15.65 16.34 0.020 0.65 0.20	16.34 0.020 0.65 0.20	0.020 0.65 0.20	0.65 0.20	0.20		0.020	1.24	1.86	0.42	0,07	0.02	1.07	0.44	0.00
75th stile 2419,60 19,70 5,00 7,40 40,00 48,00 0,048 1.84 0,46	%tile 2419,60 19,70 5,00 7,40 40,00 48,00 0.048 1,84 0,45	2419,60 19,70 5,00 7,40 40,00 48,00 0.048 1.84 0,46	19,70 5.00 7,40 40.00 48.00 0.048 1.84 0.46	5.00 7.40 40.00 48.00 0.048 1.84 0.46	7,40 40,00 48,00 0.048 1.84 0.46	40.00 48.00 0.048 1.84 0.46	48.00 0.048 1.84 0.46	0.048 1.84 0.46	1.84 0.46	0.46		0.050	5,30	1.03	0.23	0,16	0.05	5,65	0,41	0.02
Count 13.00 13.00 21.00 5.00 13.00 22.000 22.00 4.00	t 13.00 13.00 21.00 5.00 13.00 13.00 22.000 22.00 4.00	13.00 13.00 21.00 5.00 13.00 22.00 22.00 4.00	13,00 21,00 5,00 13,00 13,00 22,000 22,00 4,00	21.00 5.00 13.00 13.00 22.00 22.00 4.00	5.00 13.00 13.00 22.000 22.00 4.00	13.00 13.00 22.000 22.00 4.00	13.00 22.000 22.00 4.00	22.000 22.00 4.00	22.00 4.00	4,00		22.000	21.00	12.00	12,00	13,00	13.00	12.00	21.00	13.00
90th % tile 2419.60 47.14 5.00 7.94 45.20 48.00 0.059 2.97 0.54	%tile 2419.60 47,14 5.00 7.94 45.20 48.00 0.059 2.97 0.54	2419.60 47.14 5.00 7.94 45.20 48.00 0.059 2.97 0.54	47,14 5.00 7.94 45.20 48,00 0.059 2.97 0.54	5.00 7.94 45.20 48.00 0.059 2.97 0.54	7.94 45.20 48.00 0.059 2.97 0.54	45.20 48.00 0.059 2.97 0.54	48.00 0.059 2.97 0.54	0.059 2.97 0.54	2.97 0.54	0.54		0.061	5.90	1.79	0,40	0.16	0.05	6.58	0.77	0.02
Geomean 0.031	nean 0.031	0.031	0.091	0.031	0.031	0.031	0.031	0.031												

Appendix B GBMc Water Quality Data

Upper Little Lee Ck (LLC-1)

Upper Little Lee Ck (LL	(C-1)													- poor		-	CON Pro-								
	Sample		BOD		135	D), as P.	NH, as N	4. NO.	+NO- as	Chloride	Phoenhorous as	TOL	OrhtoP	1 SST-ben I	Dad-NH3	I N-CON	oad-TP			WC.area V	VSuaraa	TCC. N	-2010-201	Ê
Sample Type Sample	le ID Date	Flow (cfs)	and the		1/am	-	ng/L	mg/L	, z	mg/L	mg/L	P, mg/L	mg/L	(lb/d)	(lb/d)	(lb/d)	(p/q)	(lb/d) L	ad-BOD L	pad-TOC	(miz)	(Acres)	ib/acre	lb/acre	lb/acre
Baseline LLC-1	1/17/201	29.9	< 2.00	v	5.00	•	0,02	< 0.05	v	0.5	NA	< 0.020	1.77	3.2	805.5	8.1	80.5	3.2	322.2	284.5	36.2	23168	0.034766	0.003477	0.000139
Baseline Dup LLC-1-L	D 1/17/201	29.9	< 2,00	Y	5,00	v	0,02	0.0	v	0.5	NA	< 0.020	1.32	3,2	805.5	12.9	80.5	3.2	322.2	213.0	36.2	23168	0.034766	0,003477	0.000139
Storm Event LLC-1	1/25/201	2 228,0	1 6.74		36.00	¥	0.02	< 0.05	~	0.5	NA	0.400	3.47	24,6	44221.7	61.4	614.2	491.4	8279.3	4264.9	36.2	23168	1.908743	0.02651	0.021208
Baseline LLC-1	3/28/201	2 58.0	< 2.00	Y.	5,00	v	0,02	< 0.05	10	0.46	2.1	0.040	0,21	6.2	1562,4	15.6	143.7	12.5	625.0	66.3	36.2	23168	0.067439	0.006204	0.00054
Storm Event LLC-1	4/15/201	23.1	× 2.00	v	5.00	v	0,02	< 0.05	10	0.17	3.3	< 0.020	2,67	2.5	622.3	6.2	21.2	2.5	248.9	332,8	36.2	23168	0.026859	0,000913	0.000107
Storm Event LLC-	-1 3/16/201	1 54.7			00.6	v	0.02	< 0.05		0.16	3,12	< 0.02		5.9	2652,3	14.7	47.7	5.9			36.2	23168	0.114483	0.002061	0.000254
Storm Event LLC-:	-1 4/4/201	136.0			13.00	v	0.02	< 0.05		0.29	2.53	0.02		14.7	9525.3	36.6	212.5	14.7			36.2	23168	0.411142	0.009172	0.000633
Storm Event-Di LLC-1	1D 4/4/201	136.0			13.00	v	0.02	< 0.05		0.29	2.55	0.02		14.7	9525.3	36.6	211.0	14.7			36.2	23168	0.411142	0.009108	0.000633
Storm Event LLC	-1 5/8/2017	12,1			5.00	v	0.02	< 0.05		0.14	3.38	0.02		1.3	326,0	3.3	9.1	1.3			36.2	23168	0.014069	1.000391	5,63E-05
Baseflow summary																									
Average			2.00		5.00		0.020	0.05		0.48	2.10	0:030	0.99	4.7	1183.9	11.8	112.1	7.9	473.6	175.4			0.0511	0.0048	0.0003
Min			2.00		5.00		0.020	0.05	10	0.46	2.10	0.020	0.21	3.2	805.5	8.1	80.5	3.2	322.2	66.3			0.0348	0.0035	0.0001
Max			2.00		5.00		0.020	0.05		0.50	2,10	0.040	1.77	6.2	1562.4	15.6	143.7	12.5	625.0	284.5			0.0674	0.0062	0.0005
Stdev			0		0		0,000	0	0	028284	#DIV/0	0,014	1.098632	2,1	535.3	5.4	44.7	6.6	214.1	154.3			0.0231	0.0019	0.0003
Median			2.00		5.00		0.020	0.05		0.48	2.10	0.030	0.99	4,7	1183.9	11.8	112.1	7.9	473.6	175.4			0.0511	0.0048	0.0003
5			2		2		2,000	2		2	-	2.000	2	2.0	2.0	2.0	2.0	2.0	2.0	2.0			2.0000	2 0000	2.0000
												0.028													
Storm flow summary																									
Average			4.37		13.60		0.02	0.05		0.25	3.08	0,10	3.07	9.78	11469 53	24.45	E6 081	103.14	264.10	2298.87			0.4951	0.0078	0.0045
Min			2.00		5.00		0.02	0.05		0.14	2.53	0.02	2.67	1.30	325 _* 95	3.26	90 6	1.30	248.91	332,79			0.0141	0.0004	0,0001
Max			6.74		36.00		0.02	0.05		0.50	3.38	0.40	3,47	24,57	44221.75	61.42	614,19	491.35	1279.29	1264.94			1.9087	0.0265	0.0212
Stdev			3,3516	86	12 9537	9	0	0		0,15045	0.385127	0.169941166	0.564271	9.779282	18682.03	24.4482 2	55,6933 2	17.0811	678.34	2780.45			0.8064	0.0110	0.0094
Median			4.37		9.00		0.02	0.05		0.17	3.21	0.02	3.07	5.89	2652.34	14.74	47.74	5.89	264.10	2298.87			0,1145	0.0021	0.0003
-			2		'n		'n	ŝ		s	4	5	2	S	ŝ	5	2	S	2	7			5.0000	5,0000	5,0000

Notations:

v =

2

Upper Little Lee Ck (LLC-1)

Upper Little Lee Ck (L	11-21													- prof		2	EON Pro-								
					i		•				1				ļ			!							
	sample		800		TSS,	ž	A, as P,	NH ₃ as N,	NO ₃ +NO ₂ as	Chloride,	оң,	sphorous as	10C,	OrhtoP	Load-TSS L	EHN-bec	NO2-N	.oad-TP		>	VS-area W	/S-area	TSS- N	-20N-E0	é
Sample Type Samp	le ID Date	Flow (cfs)	mg/L		mg/L		mg/L	mg/L	N, mg/L	mg/L		P, mg/L	mg/L	(p/q)	(p/q)	(p/q)	(P/q)	17 (P/q)	ad-BOD L	oad-TOC	(mi2) (Acres)	lb/acre	lb/acre	lb/acre
Baseline LLC-1	1/17/201	2 29.9	< 2.0	200	5.00	v	0.02	< 0.05	< 0.5	NA	v	0.020	1.77	3,2	805.5	8.1	80.5	3.2	322,2	284.5	36.2	23168 (0.034766 (003477	0.000139
Baseline Dup LLC-1-	-D 1/17/201	2 29.9	< 2.0	× 00	5.00	v	0.02	0.08	< 0.5	NA	v	0.020	1.32	3.2	805.5	12.9	80.5	3.2	322.2	213.0	36.2	23168 0	0.034766 (7746000	0.000139
Storm Event LLC-1	1/25/201	2 228.0	i 6.7	14	36.00	v	0,02	< 0.05	< 0.5	NA		0.400	3.47	24.6	44221.7	61.4	614.2	491.4	8279,3	4264.9	36.2	23168 1	1.908743	0.02651	0.021208
Baseline LLC-1	3/28/201	2 58.0	< 2.0	> 00	5,00	v	0.02	< 0.05	0.46	2.1		0.040	0.21	6.2	1562,4	15.6	143.7	12.5	625.0	E.33	36.2	23168 0	0.067439 (006204	0.00054
Storm Event LLC-1	4/15/201.	2 23.1	< 2.0	× 00	5.00	v	0.02	< 0.05	0.17	3.3	v	0.020	2.67	2.5	622.3	6.2	21.2	2.5	248.9	8.2EE	36.2	23168 0	0.026859 (E16000'0	0.000107
Storm Event LLC	-1 3/16/201	4 54.7			9.00	v	0.02	< 0.05	0.16	3.12	v	0.02		5.9	2652,3	14.7	47.7	5.9			36.2	23168 C	0,114483 (002061	0.000254
Storm Event LLC	-1 4/4/2014	1 136.0			13,00	v	0.02	< 0.05	0.29	2.53		0.02		14.7	9525.3	36.6	212.5	14.7			36.2	23168 0	0.411142 0	009172	0.000633
Storm Event-Dt LLC-	-1D 4/4/2014	1 136.0			13.00	v	0.02	< 0.05	0.29	2,55		0.02		14.7	9525.3	36.6	211.0	14.7			36.2	23168 0	0.411142 (006108	0.000633
Storm Event LLC	-1 5/8/2014	1 12.1		*	5.00	v	0.02	< 0.05	0.14	3,38		0.02		1.3	326.0	3.3	9.1	1.3			36.2	23168 C	0.014069 (1000391	5.63E-05
Baseflow summary																									
Average			2.0	2	5.00		0.020	0.05	0.48	2.10		0.030	66'0	4.7	1183.9	11.8	112.1	7.9	473.6	175.4			0.0511	0.0048	0.0003
Min			2.0	0	5.00		0.020	0.05	0.46	2.10		0.020	0.21	3.2	805.5	8.1	80.5	3.2	322.2	66.3			0.0348	0.0035	0,0001
Max			2.0	Q	5.00		0.020	0.05	0.50	2.10		0.040	1.77	6.2	1562.4	15.6	143.7	12.5	625.0	284.5			0.0674	0.0062	0.0005
Stdev			0	ć	0		0.000	0	0,028284	#DIV/01		0.014	1,098632	2.1	535,3	5.4	44.7	6.6	214.1	154.3			0,0231	0,0019	0,0003
Median			2.0	2	5.00		0.020	0.05	0.48	2.10		0.030	0.99	4.7	1183,9	11.8	112.1	7.9	473.6	175.4			0.0511	0.0048	0.0003
5			2	6	2		2.000	2	2	Ч		2.000	2	2.0	2.0	2.0	2.0	2.0	2.0	2.0			2.0000	2 0000	2.0000
												0.028													
Storm flow summary																									
Average			4.3	2	13,60		0.02	0.05	0.25	3,08		0,10	3.07	9.78	11469 53	24.45	180.93	103.14	1264.10	2298.87			0,4951	0.0078	0.0045
Min			2.0	ę	5.00		0.02	0.05	0.14	2,53		0.02	2.67	1,30	325.95	3.26	9.06	1.30	248,91	332,79			0.0141	0.0004	0.0001
Max			6.7	14	36.00		0.02	0.05	0.50	3,38		0.40	3.47	24.57	44221.75	61,42	614,19	491.35	3279.29	4264.94			1.9087	0.0265	0.0212
Stdev			3,351	.686	12.9537	16	0	0	0.15045	0 385127		0 169941166	0.564271	9.779282	18682 03	24.4482 2	55,6933 2	17.0811	5678.34	2780.45			0.8064	0.0110	0.0094
Median			4.3	6	9.00		0.02	0.05	0.17	3.21		0.02	3.07	5.89	2652.34	14.74	47.74	5.89	1264.10	2298.87			0.1145	0.0021	0.0003
c			2	5	ŝ		ŝ	S	5	4		S	2	s	2	5	ŝ	5	2	2			5.0000	5.0000	5.0000

Notations:

₩ .

LLC-2	đ															load-			I nad NO3								
and the second se	Control	Sample	Sample		BOD,		TSS,	PO	as P,	NH ₃ as N,	NO3+NO2	as N, Chi	oride, P	hosphorous as P,	TOC,	OrhtoP	Load-TSS	EHN-beal	NO2-N	9T-beal		M	S-area W	S-area	TSS- N	-20N-EC	ТЪ.
Sample Type Sample ID	Number	Date	Time	Flow (cfs)	mg/L	-	mg/L	9E	V	mg/L	mg/L	e .	No.	men	T/Sm	(Ip/qI)	(Ib/dI)	(p/qi)	(IP/qI)	(p/q)	1 OD8-bea	ad-TOC	(ml2) (J	Acres)	b/acre 1	b/acre It	b/acre
Baseline LLC-2	12-00357	1/17/2012	1750	86,0	< 2.0	* 0	5.00	¥	0.02	¢ 0.05	*	S	MA	< 0.02	100	6.6	23167	23.2	231.7	9.3	926,7	462.9	119.4 7	76416 0	030317 0	003032 0	000121
Storm Event LLC-2	12-00571	1/25/2012	11:10	2210.0	i 3,3,	5	244.00		0.12	c 0.05	v	15	NA	0.36	4.41	1428.8	2905231.0	595.3	5953.3	4286.4	40363.7	52544 2	119.4 7	76416 3	3.01B62 0	0 206770	056093
Baseline LLC-2	12-01913	3/28/2012	13:10	207.0	< 20	v Q	5 00	v	0.02	c 0.05	0	29	1.8	400	1.58	22.3	5576.2	55.8	323.4	44.6	2230.5	1756 5	119,4	76416 0	0 272972	004232 0	000584
Storm Event LLC-2	12-02283	4/15/2012	21:20	48.0	< 2.0	v o	5.00	v	0.02	د 0.05	Ő	12	2,5	0.02	1.86	5.2	1293.0	12.9	31,0	5.2	517.2	480.2	119.4 7	76416 0	016921 0	000406 6	77E-05
Storm Event C LLC-2-D	12-02284	4/15/2012	21:21	48.0	< 2,0	v 0	5.00	v	0.02	< 0.05	0	12	2.6	0.02	2.20	5.2	1293.0	12.9	31.0	5.2	517 2	569.7	119.4 7	76416 0	016921 0	000406 6.	77E-05
Storm Event LLC-2	14-01464	3/16/2014	9:20	425,0			57.00	v	0,02	< 0.05	o	15	2,46	0.14		45.8	130515 6	114.5	341.2	320,6			119.4 7	76416 1	707961 0	004465 0.	004195
Storm Event LLC-2	14-01909	4/4/2014	9:25	333 D		v	5,00	v	0.02	20.05	0	13	2.38	< 0.02		35.9	89704	89,7	231.4	35.9			119.4 7	76416 0	0 68E711	0 620600	00047
Storm Event LLC-2	14-02620	5/8/2014	17:20	38.0		v	5.00	v	0,02	20.05	0	91	2 58	0.04		4.1	1023.7	10.2	32.1	8.2			119.4 7	76416 0.	0 365510	000421 0	000107
Baseflow summary																											
Average					2.0	0	5.00	-	0.020	0,05	0	40	1.80	0000	1.29	15.8	3946.4	39.5	277.5	26.9	1578.6	1109.7		0	0516 (0 0036 0	0000
Min					2.0	0	5.00	-	0,020	0.05	0	29	1.80	0.020	1.00	9.3	2316.7	23.2	231.7	9.3	926.7	462.9			0303	0030	0001
Max					2.0	0	5,00	-	0'020	0.05	0	50	1,80	0.040	1.58	22.3	5576.2	55.8	323.4	44.6	2230.5	1756.5			0730	0.0042	0.0006
Stdev					0		0	-	0.000	0	0.14	8492	HDIV/01	0.014	0 407294	9.2	2304.8	23.0	64.9	25.0	921.9	914.7			0.0302	0008	E000'0
Medlan					2.0	0	5.00	-	0,020	0.05	°.	40	1,80	0:030	1.29	15.8	3946.4	39.5	277.5	26.9	1578.6	1109.7		0	0.0516	0 9600 0	0,0004
Е					2		7		2,000	2	. *	2	Ħ	2.000	2	2.0	2.0	2.0	2.0	2.0	2.0	2.0			0000	0000 2	2.0000
Storm flow summary																											
Average					2.70	0	63,20		0.04	0,05	ö	21	2.48	0.12	3.14	303,95	609406 74	164 S4	1317 83	931.24	20440.44 2	5512 22			,9749 (0172 0	0.0122
Min					2.00	P	5.00		0.02	0.05	Ó	12	2.38	0 02	1.86	4.09	1023.65	10,24	31,03	5.17	517 21	480.23		0	0,0134 (0,0004 0	0.0001
Max					33	σ.	244.00		0.12	0.05	0	50	2 58	0.36	4 41	1428.80	2905230 99	595.33	5953 34	4286.41	40363,66 5	2544.20		m	8.0186 (0 6/10	0,0561
Stdev					0 9828	878	103 5481	0	044721	•	0,16	2239 L	0.080914	0.145189531	1,807365	629.0824	1284581.8	245.196	2594 751	1880,25	28175,69 3	5814.78		1	6 8104 (0340 0	0,0246
Median					2.7(0	2 00		0.02	0.05	0	15	2.48	0.04	3.14	35.88	8970.42	89.70	231.44	35 88	20440 44 2	5512.22		0	1174 (0030 0	1,0005
-					7		2		N	w.		5	4	ŝ	2	s	ŝ	S	S	ŝ	2	2		.,	0000	0000	5.0000

 Load-TSS
 Load-TSSS
 Load-TSS
 Load-TSS

Jenkins Creek (JC-1)	Sample Type Sample I	Baseline JC-1	Storm Event JC-1	Baseline JC-1	Storm Event JC-1	Storm Event JC-1	Storm Event 10-1	Storm Event IC-1		Baseflow summary	Average	Min	Max	Stdev	Median		Storm flow summary	Average	Min	Max	Striev		Median	-			
đ	Number	12-00352	12-00564	12-01911	12-02276	14-01462	14-01906	14-02618																			
	Date	1/17/2012	1/25/2012	3/28/2012	4/15/2012	3/16/2014	4/0/2014	5/8/2014	Arrow In In																		
	Time	11:40	6:30	12:35	16:45	8:15	R:75	16:30																			
	Flow (cfs)	12.6	178,0	27.5	64.7	173.0	47.4	44	5																		
-	nua mg/L	< 2.00	i 27.	< 2.00	< 2.00						2,00	2.00	2,00	0	2.00	2		2.36	2.00	2.71	05020		2.36	2			
,	E	v		v	~		v	· v	,		~	~	~		~			10	~		AG6 L	ξ.	~				
ŝ	ń Ja	5,00	112,00	5.00	9,00	80.00	005	001	N ¹⁰		5,00	2,0	5,00	0	5.00	2		42 20	5.00	112.00	20.47519		9.00	ŝ			
100	mg/L	< 0.02	0.04	< 0.02	0.04	< 0.02	000	200	40.0		0.020	0.020	0.020	0.000	0.020	2,000		0.03	0,02	0.04	0.010954		0.02	ŝ			
-	in fun	5	~	v	v	v	v	/ \	,		J	0	0	1010	0			U	¢	o			J				
1	ία Γ	> .0.0	> 20.02	3,05	20.05	1.05	50	201			30.05	1,05	1,07	14142	1.06	N		3.05	1.05	1,05	0		50.1	S			
	mg/L	0.5	0.5	0.32	0,35	0.22	010	67-0	170		0.41	0.32	0.50	0.127279	0.41	14		0:30	0.19	0.50	127741	1-2/270	0.24	ŋ			
:	mg/L	NA	AN	2.0	2.6	2.64	2.65	2 69	017		2.00	2.00	2,00	#DIV/0]	2.00	Ţ		2,65	2.60	2.69	0.03R53R		497	4			
	Phospho m	v		v			,	,													200	2					
	rrous as P, g/L	0.02	0.05	0,02	0.05	0.13	000	20.05	8		0.020	0.020	0,020	0,000	0,020	2.000		0.06	0.02	0.13	40865533	0.05	500	2			
	TOC,	0.97	4.09	1.70	3.18						1.33	0,97	1.70	0.519016	1.33	N		3,63	3,18	4.09	7063075		3.63	2			
-toad-	(Ib/di)	1.4	38.4	3,0	13.9	18.6	1		3		2.2	1.4	3.0	1.1	22	2.0		15,35	0,69	38.36	14 68083		13,94	S			
	(p/ql)	339.4	107408.0	740,8	3137.2	74564.9	1776 9	V CLI	477/T		540,1	339.4	740.8	283.8	540.1	2.0		37311.89	172.40	107407.99	FURKE 771	T7700000	3137.22	'n			
	(p/ql)	4.8	47.9	7.4	17.4	46.6	12.0	0.21	1		6.1	4,8	7.4	1.9	6.1	2.0		25.29	1.72	47.95	20 86657	1000007	17 43	n			
Load-NO3-	(Ib/d)	33,9	479.5	47.4	122.0	204.1	78 5	- 04 - 0	7.0		40.7	33.9	47.4	3,5	40.7	2.0		172.48	8.28	479.50	187.1750		122 00	ŝ			
ļ	1 (p/q)	1.4	47,9	30	17.4	121.2		1.0	17		2.2	1.4	3.0	1.1	2.2	2.0		38,74	2,07	121.17	1 10050		17.43	S			
	Ad-BOD Lo	135.8	2598.9	296,3	697.2						216.0	135.8	296.3	113.5	216.0	2.0		L648,03 2	697,16 1	E 68.895	1 SCT ANE		[648.03 Z	14			
:	ad-TOC M	65.6	3917_5	252.0	1108.8						158.8	65.6	252.0	131.8	158.8	2.0		513.17	108,83	917.51	750 280	100,000	513,17	7			
	V (miz) (/	14,9	14,9	14.9	14.9	14.9		5.4T	n. F																		
	Sares (Inst)	9536 0.0	9536 11	9536 0.0	9536 0.1	7 9536		9030 U			0	0	o	¢				m	0	.1	U	ni (ø	ŝ			
	/acre Ib	135594 0,0	26342 0.0	77685 0,0	128987 0.0	81931 0.0			n'n 6/nati		0566 0.	0356 0	0 2770	0298	0566 0.	0000		9127 0.	0181 0.	7634 0	0 7180	0 1707	3290 0.	0000			
	J-NO2- acre Ib,	03559 0,0	50283 0,0	04972 0,0	12794 0.0	71405 0.0		n'n senco	0.0 20200		0043 0.	0.036 0.	0050	010	C EHOO	0000		0, 1810	0 6000	0 503	0		0.0	0000 5,			
I	b/acre	000142	005028	115000	001828	012706		710000	177000		0.0002	10001	0003	0001	0002	0000		0.0041	0.0002	7010.0	0000		0018	0000			

¢.
CC-1	ą															-beal		-	-EON-bac								
	Control	Sample	Sample		BO	Ċ,	TSS,	-	PO ₄ as P,	NH 3	as N, N	O ₃ +NO ₂ as N,	Chloride, I	Phosphorous as P,	TOC,	OrhtoP	Load-TSS L	oad-NH3	NO2-N	oad-TP		WS	-area WS	-area T	S- NOB	-NO2- T	4
Sample Type Sample ID	Number	Date	Time	Flow (cfs)	Ë	4	ug∕L		mg/L	E	ve/L	mg/L	mg/L	mg/L	mg/L	(IP/q)	(p/q)	(IP/qI)	(Ib/d)	ग (p/ql)	ial OOB-bec	ad-TOC (n	ni2) (A	res) lb/	icre Ib/	acre Ib/	acre
Baseline CC-1	12-00354	1/17/2012	13:30	53.0	v	2.00	< 5.00	v	0,02		0,07	< 0.5	NA	< 0.02	1,42	5,7	1427,7	20.0	142,8	5.7	571,1 4	405,5 5	3.7 34	1368 0,04	1542 0.00	4154 0.00	0166
Storm Event CC-1	12-00566	1/25/2012	8:20	870,0		2,00	53.0	0	0.02	v	0.05	< 0.5	NA	0.29	4,24	93.7	248424.1	234.4	2343.6	1359.3	9374.5 11	9878 G 5	3,7 J	368 7.22	8354 0.06	8192 0.03	9551
Baseline CC-1	12-01909	3/28/2012	10:45	121,0	~	2,00	< 5.00	v	0.02	v	0,05	0,22	m'T	0,05	1.54	13,0	3259,5	32.6	143,4	32.6	1303,8 1.	5 6'EOO	3.7 34	368 0,05	4842 0.00	4173 0.00	0948
Storm Event CC-1	12-02278	4/15/2012	18:15	21.8	v	2.00	< 5.00	×	0.02	v	0.05	0.07	1,9	0.03	1,57	2,3	587.3	5.9	7.8	3.5	234.9	183.9 5	3,7 3/	368 0.01	7087 0.00	0226 0.00	0103
Storm Event CC-1	14-01468	3/16/2014	12:35	202.0			122.0	v Q	0,02	v	0.05	0.43	1.82	0.27		21,8	132773.0	54.4	464.7	293.8		ŝ	3.7 34	368 3.86	3274 0.01	3521 0.0	3855
Storm Event CC-1	14-01913	4/4/2014	12:15	41.9			< 5.00	v	0.02	v	0.05	0.16	1.85	< 0.02		4.5	1128,7	11.3	35.2	4.5		ŝ	3,7 34	368 0.03	2842 0.00	1025 0.00	IEIO
Storm Event CC-1	14-02624	5/8/2014	19:20	13,4			< 5.00	×	0.02	v	0.05	0.14	2.06	< 0.02		1,4	361.0	3.6	10.1	1.4		'n	3.7 3v	368 0.01	0503 0.00	0294 4.2	502
Baseflow summary																											
Average						2,00	5.00		0,020		0,06	0.36	1.30	0,035	1.48	9,4	2343,6	26,3	143.1	19.2	937.4 7	7.04.7		0.0	682 0.0	042 0.0	900
Min						2.00	5,00	-	0.020		0.05	0.22	1,30	0,020	1.42	5.7	1427.7	20,0	142.8	5.7	571,1 4	105,5		0.0	415 0,0	042 0.0	200
Max						2.00	5.00	_	0.020		0,07	0.50	1.30	0.050	1,54	13.0	3259.5	32.6	143.4	32.6	1303.6 1.	6.600		0.0	948 0.0	042 0.0	600
Stdev						0	0		0.000	5	7.014142	0.19799	IO/VIC#	0,021	0.084853	5.2	1295,3	8.9	0.5	19,0	518.1 4	2.624		0.0	377 0.0	000	900
Median						2.00	5.00		0.020		0.06	0.36	1.30	0.035	1.48	9.4	2343.6	26.3	143.1	19.2	937.4 3	7.04.7		0.0	582 0,0	042 0.0	900
-						2	2		2.000		2	2	-1	2.000	2	2.0	2,0	2,0	2.0	2.0	20	2,0		2.0	000 2.0	000 2.0	8
Storm flow summary																											
Average						2.00	38.00		0.02		0.05	0.26	1.91	0.13	2,90	24.76	76654,80	61.91	572.28	332,53 4	1804.70 10	031.27		2.2	304 0.0	167 0.0	097
Min						2.00	5.00		0.02		0.05	0,07	1.82	0,02	1,57	1.44	360.97	3.61	7.75	44.1	234,90 1.	83,93		0'0	105 0.0	002 0.0	000
Max						2.00	122.0	ç	0.02		0.05	0.50	2.06	0,29	4.24	93.74	NHORMAN	234,36	2343,62	3 OE'65E'	3374.49 19.	878.61		7.2	284 0.0	682 0,0	396
Stdev						0	51.351	73	0		0	0.19256	0,107367	0,140819033	1.891511	39.44504	111764.4	98,6126	5 600 6001	87.6253 6	462.668 13.	926.25		3,2	520 0.0	294 0.0	171
Median						2.00	5.00	-	0.02		0.05	0.16	1.88	0'03	2.90	4.51	1128.71	11.29	35.22	4.51 4	1804.70 10.	031.27		0.0	328 0.0	010 0,0	100
Ľ						2	ŝ		ŝ		S	ហ	4	ŝ	2	ŝ	S	S	s	S	2	2		5,0	000 5.0	000 5.0	00

														-beol			Loud-NO.	ę							
Linb Control Sam	ole Sampli		¥	ģ	SSI .	2	0, es P,		ž	N ST ON+6C	Chloride,	Phosphorous as	P, TOC,	Orhto	2T-beol C	IN-paol 2	H3 NO2-N	T-beal	ρ.		WS-area	WS-area	121	03-N02-	
ID Number Det	am1	How (cts	E	R/L	mel	-	1/2m	NH3 as N.	mg/L	mell	meA	mg/L	mg/L	(p/q)	(P/q)	(p/ql)	(p/q)	(p/q)	Load-BC	D Load-TDC	(miz)	(Acres)	lb/acre	lb/acre T	P-lb/acra
12-00356 1/17/	1012 17:05	41,6	•	2,00	× 5.00	*	0.02	v	50	0.5	NA	€ 0.02	86'0	4.5	1120.6	11.2	112.1	4.5	448.3	219,0	39.65	25344	0.044217	004422	77,000,0
12-00567 1/25/.	2012 8:50	1556.0		2,68	163.0	8	60 0	v.0.	05	0,5	NA	6E 0	4.81	754.5	1366456	4 419.2	4191.6	3269.4	1 22466	9 40281.1	39.6	25344	53 91637	165388	000601.0
12-01908 3/28/.	2012 10:20	5 63,5	v	2,00	< 5.00	ľ	0.02	° v	.05	0.26	1.5	0.05	1,26	68	1710.6	17.1	88.9	17.1	684.2	430.4	39.6	25344	0.067494	0.00351	000675
12-02280 4/15/.	2012 19:20	17,6	v	2,00	< 5.00	v	0.02	v	05	21,0	2.3	< 0.02	1,86	1.9	474.1	4.7	14.2	1.9	189.6	175.9	39.6	25344	0.018707	000561	7 485-05
-1 14-01467 3/16/.	2014 11:30	0 218 0			9,00	v	0.02	v	05	61,0	2,65	0.03		23.5	10570	5 58.7	148.0	35.2			39.6	25344	0.417083	005839	0.00139
-1 14-01912 4/4/2	014 11:35	168.0			< 5.00	×	0.02	v 0	.05	0.12	1,97	< 0.02		18.1	4525.6	45,3	107.7	18.1			39.6	25344	0.178568	0.00425	0.000714
-1 14-02613 5/8/2	014 16:30	13,5			< 5.00	v	0,02	ď	10	0.17	2.40	0.04		15	363,7	7.3	12,6	2.9			39.6	25344	0.014349	000496	0.000115
				2,00	5.00	-	0.020	0,0	20	BE.0	1.50	0.035	1.12	5.7	1415.6	14.7	100 5	10.8	566.7	7 90E			0.0550	00000	0,000
				2,00	5,00		0,020	0.0	50	0.26	1.50	0.020	0,98	4.5	1120.6	11.2	88.9	4.5	448.3	219.0			0.0442	0.0035	0.0002
				2,00	5.00	~	0,020	170	05	0.50	1.50	0'020	1,26	6.8	1710.6	17.1	112.1	17.1	684.2	430.4			0.0675	0.0044	0.0007
				٥	0		0,000	-		0.169706	ID//VIC#	0.021	0,19869	7 1.7	417.2	4.2	16.3	8.9	166.9	149.5			0.0165	0.0006	0.0004
				2,00	5.00	~	0/020	170	05	0,38	1.50	0.035	1,12	5.7	1415.6	14.2	100.5	10.8	566.2	324.7			0.0559	0.0040	0.0004
				2	7		2,000	. 1	2	2	Ŧ	2.000	2	2.0	2.0	2.0	2.0	2.0	2.0	2.0			2,0000	2,0000	2,0000
*																									
				2.34	37.40	c	E0.0	10	90	0.21	2,33	01-0	88 B	159.85) 276478.4	107.0E	1 894.82	665.52	11328.2	7 20228-51			10.9090	0 0353	0.0263
				2.00	2 00	6	0.02	0.1	05	0,12	1,97	0.02	1.86	1.45	363.67	4.74	12.58	1.90	189,64	175,90			0,0143	0 0005	0.0001
				2.68	163.0	2	0.09	0	10	0.50	2.65	0 39	4.81	754.45	1366456.	36 419.16	3 4191.58	3269.4	4 22466.8	9 40281.12			53,9164	0.1654	0.1290
			0	1,480833	70 233	681	0.031305	0.02	2361	0,161509	0.280521	0.1623268.	31 2.08596	5 332.534	11 609330.54	577 176 055	36 1843 89.	2 1455.65	9 15752.3	9 28358.68			24,0424	0.0728	0.0574
				2.34	5,00		0.02	10	05	0,15	2.35	0,03	3.33	18.10	4525.6.	2 45.26	107-71	18,10	11328.2	7 20228.51			0,1786	0,0042	0.0007
				2	N		S	1	LD.	ŝ	4	ŝ	24	ŝ	N	ŝ	ŝ	ŝ	2	2			5.0000	5.0000	5 0000

TP-lb/acre 0 000137 0 000137 0.017769 0 000249 0 000249 0 000395 0 000395 7 33E-05 7 33E-05 0 0003 0 0003 0 0003 0 0 0003 0 0 0003 0.0001 0.0001 0.0178 0.0078 0.0004 0.0004 NO3-NO2-Ib/mcre 1 0.003421 0.003421 0.0055529 0.003394 0.003843 0.004823 0.004823 0.004823 0.004823 0.004673 0.0034 0.0034 0.0034 0.0004 0.00034 2.0000 0.0153 0.007 0.0555 0.0555 0.0232 0.0048 5.0000 TSS-lb/acre lb/acre 0 034206 5 997126 0 0342059 0 0342059 0 0321096 0 021096 0 0256988 0 02199904 0 0211989 0 0485 0.0342 0 0629 0 0203 0.0485 0.0485 1.3014 5.9271 5.9271 2.6270 5.0000 W5-sreet (Acres) 24256 24256 24256 24256 24256 24256 24256 24256 24256 24256 24256 WS-arraw (ml2) 379 379 379 379 379 379 379 Load-TOC 164 9 154 9 15039.6 461 1 206 4 7622 98 206.37 15039 60 10488 68 7622 98 2 313.0 164.9 461.1 209.4 313.0 2.0 331 9 331 9 331 9 6034.2 609 9 301.7 3167 93 301 71 6034 16 4053.454 3167 93 470.9 331.9 609.9 470.9 2.0 93 56 1 78 431 01 188.7521 9.59 5 (lb/d) 3.3 3.3 431.0 12.2 6.0 9.6 9.6 19.4 1.8 7.8 3.3 12.2 6.3 7.8 2.0 Lond-NO3-NO2-N (lb/df) 83.0 83.0 83.0 83.0 83.3 21.1 117.5 117.0 355.9 355.9 371 63 16.71 1346 91 562.3246 117.48 55 82.7 83.0 0.4 82.7 2.0 (Ib/d) (Ib/d) 8.3 8.3 8.3 15.2 15.2 7.5 7.5 7.5 24.0 24.0 24.0 24.0 24.0 24.0 24.0 43.83 4 44 134 69 53.71129 23 97 23 97 5 11.8 8.3 15.2 15.2 4.9 11.8 2.0 (lb/d) (lb/d) 8297 8297 8297 14546 3 14546 3 1524.7 754 3 754 3 754 3 754 3 754 3 754 3 754 3 754 3 754 3 754 3 753 5 6233 5 6233 5 6233 5 6233 5 6523 5 7 823.4 823.4 823.4 823.7 8 31567 26 533 38 145466.28 63720 484 4848 88 5 1177.2 829.7 1524.7 491.4 1177.2 2.0 33.69 1.78 134.69 56.88926 9.59 5 Loed-Orhtop (b)(d) 3 3 3 3 3 3 3 3 5.1 3.0 9.6 9.6 19.4 1.8 4.7 3.3 6.1 6.1 7.4 7.7 2.0 TOC, mulh 0,99 0,99 0,99 1,51 1,51 1,51 125 099 151 125 125 2 3.48 1.37 5.58 2.980455 3.48 3.48 Phosphorous as P. mg/L 0 05 0.02 0 16 0 002 0 02 5 0 030 0 020 0 040 0.014 0.030 2.000 0.02 0.046 0. math. NA NA NA NA NA NA NA S57 235 245 545 545 545 545 405 2 00 2 00 2 00 2 00 2 00 1 4.15 2 50 5.57 1 269105 4.26 Chloride, ND,+NO, AS N. 0 39 0 27 0 50 0.162635 0.39 2 0.29 0.14 0.50 0.145721 0.25 5 1/Jan NH, es N. me/l 0.05 0.05 0.05 0.05 2 0.03 0.02 0.05 0.013416 0.02 5 0 020 0 020 0 020 0 000 2 000 PO, #1 P. 16.60 5 00 54 00 21 1731 6 00 5 200, 200 200 224 224 200 220 200 212 200 224 0169706 2.12 2 44 How (cf) 30.8 30.5 50.0 56.6 56.6 56.6 28.0 89.0 89.0 89.0 130.0 130.0 Sample Time 15:50 15:50 15:50 9:10 10:25 10:25 10:25 10:25 10:25 Semple Deta Deta 1/16/2012 1/12/2012 3/15/2012 3/15/2012 3/15/2013 3/15/2014 3/15/2014 3/15/2014 Lub Central Number 12-00403 12-00403 12-00403 12-00562 12-00552 12-00052 10 Sample Type Sample ID Baseline WC-1 Baseline WC-1 Stam Even WC-1 Baseline WC-1 Baseline WC-1 Baseline WC-1 Stam Even WC-1 VIBRITURE Baseflow summery Average Min Max Stdev Median Storm flow s Average Mln Max Stdev Median MCI

LC-1 (upper Lee Ck)																														
	-	4																	-bad-			Lond-NO3-								
	ď	wrtroł S.	ample 1	Sample		8	ġ,	13	Ś	PO ₄ es t	6 *		+ ^E ON	-NO ₂ as N,	Chloride,	Phosph	horous us P,	TOC,	OrhtoP	Load-TSS L	oad-NH3	NO2-N	Load-TP		-	W5-area	WS-area	N -25T	03-N02-	
Sample Type 5	ample ID NL	umber	Dute	Time	Tow (cfs)	μ	4	ЯШ	J/s	mg/L	NH ₃	as N, ma	1	1/1m	m@/L	-	mc/L	mg/L	(p/q)	(lb/d)	(p/q)	(p/q)	(lp/ql)	1 008-bea	oad-TOC	(miz)	(Acres)	lb/acra	lb/acre 1	P-lb/acre
Baseline L	C-1 12	-00355 1/.	17/2012	15:30	78.6	v	2.00	v	5,00	 0.1 	02	0.05	v	0.5	NA	v	0,02	0.77	8,5	2117,3	21.2	211.7	85	846.9	324.4	97.2	62208	034036	Martin C	0.000136
Storm Event L	C-1 12	-00568 1/1	25/2012	9:45	687.0		2.41	-1	115.00	10	× 90	0,05	v	0.5	NA		0.32	2.83	222.1	425650.5	185.1	1850.7	1184.4	8920.2	10471.0	2.72	62208	842376	029749	0.01904
Storm Event Dup Li	C-1-D 12	-00569 1/1	15/2012	3:45	687.0	3	2.35	1	116.00	× 0.	~ ~	0.05	۷	50	MA		0.56	2.76	74.0	429351.8	185.1	1850.7	2072.7	8698.1	10219.3	97.2	62208	901874	P47PC0.0	0.033319
Baseline L.	C-1 12-	7/E 01610-	28/2012	11:15	199.0	v	2.00	÷	5.00	× 0	02 <	0.05		0,36	22		0.05	0.96	21.4	5360.7	53,6	386,0	53.6	2144.3	1026.9	97.2	62208	0.086174	006205	0.000862
Baseline Dup L	C-1-D 12:	-01915 3/;	28/2012	11:20	199.0	×	2 00	٧	5,00	ě v	8	0.05		0,37	2,3	۷	0.02	0,97	21.4	5360.7	53,6	396,7	21.4	2144.3	1041 2	97.2	62208	0.086174 0	006377	0.000345
Storm Event L	C-1 12	-02279 4/1	15/2012	18:41	19.6	v	2.00	v	5.00	no.	02	0.05		0,10	4,7		0.03	1,21	2.1	533.4	5.3	10.7	3,2	213.4	128,9	97.2	62208	0 008574	1/100000	5.14E-05
Storm Event	LC-1 14	-01470 3/1	16/2014	15:00	1580,0			a	143.00	¥0	02	0.05		0.40	3 95		0,31		170/2	4 517283 4	425.6	3396.5	2638.9			97.2	62208	9 26796	054599	0 04242
Storm Event	LC-1 14-	-01915 4/	4/2014	14:40	284.0			۷	5,00	¥0	02 *	0.05		0.20	3,66	¥	0,02		30,6	7650.4	76,5	303,0	30.6			97.2	62208	122982	0.00487	000492
Storm Event	LC-1 14	-02615 5/	8/2014	19:30	30,6			۷	5.00	× 01	02	0.05		0.15	6,37	v	0,02		3.3	824.3	8.2	25.4	3.3			97.2	62208	1925101	8010000	5.3E-05
The second second second second second																														
											1																			
Average							Z.00		2:00	0.0	120	0,05		0.43	2.20		0.035	0.86	15.0	3739.0	37.4	298.9	31,0	1495,6	675.6			0.0601	0.0048	0.0005
Min							2.00		5.00	0.0	120	0.05		0.36	2 20		0,020	0.77	8.5	2117.3	21.2	211,7	8.5	846.9	324,4			0.0340	0.0034	0.0001
Max							2.00		5.00	0.0	120	0,05		0.50	2.20		0 050	96'0	21.4	5360.7	53.6	386.0	53.6	2144.3	1026 9			0.0852	0.0062	6000'0
Stdev							0		0	00	8	0		0.098995	#DIV/D		0.021	0,135623	9.2	2293.4	22.9	123.2	31.9	917.4	496.8			0.0369	0.0020	0.0005
Median							2.00		5.00	0.0	120	0.05		0.43	2.20		0,035	0,86	15.0	3739.0	37.4	298.9	31.0	1495,6	675,6			0,0601	0.0048	0.0005
-							2		2	2.0	8	2		2	1		2.000	2	2.0	2.0	2.0	2.0	2,0	2.0	2.0			2 0000	2,0000	2.0000
Storm flow summary																														
											9				!															
Average							177		Do th	ň	5	50.0		17.0	4.67		0,14	2 02	85.67	330388 40	140,15	1117 23	80 2///	4566.75	5299,93			5,3110	0.0180	0.0124
Min							2.00		5.00	10	32	0.05		0.10	3.66		0,02	1,21	2,13	533,38	5,33	10,67	3,20	213,35	128,86			0,0086	0,0002	1000 0
Max							2.41	**	143,00	10	90	0.05		0.50	6.37		0.32	2.83	222.08	1217283,38	425.62	3396.48	2638.87	8920,15	0471.00			19.5680	0.0546	0.0424
Stdev						Ó	289914	5	3.63527	0.01.	7889	0		0.171085	1.218406	0	1 159843674	1,14622	103,1468	528496 497	175,4552	1484,294	1160,486	6156,64	7312,996			8,4956	0,0239	0.0187
Median							2 21		5.00	0	32	0.05		0.20	4.32		0.03	2.02	30.60	7650,45	76.50	302,96	30.60	4566.75	5299,93			0,1230	0,0049	0,0005
-							7		'n	~1	10	ŝ		'n	4		ŝ	2	'n	S	v	S	S	1	2			5,0000	5,0000	5,0000

٩														Load-			Pow-beol								
trol Sample Sample	Sample	 form (of a)		300,	TSS,	đ.	O4 as P,	NH3 as N,	NO ₃ +NO ₂ as	N, Chlorid	e, Pho	sphorous as P,	TOC	OrhtoP	Load-TSS	HN-peor	NO2-N	Load-TP			WS-area	WS-area	TSS- N	03-N02-	Ъ.
3405 1/18/2012 17:00	2 17:00	49.0	ľ	2 00	×	1×	000	0.05	1000		V VI	0.00	Ca C		(n/ai)		(p/ai)	(b/ai)	1090-000	Toad-10C	(miz)	(Acres)	Ib/acre	D/acre	b/acre
10101 1/12/2012 10:45	2 10:45	ODSEE	V	2.00	65.	8	0.07	¢ 0.05	× 0.5		N.	0.18	160	1263.4	1179158.6	7.01 A	E PCUS	LANCE	C 10035	1 242	5 147	1 919401	n 9768001		41E-US
1914 3/28/2012 13:30	13:30	392.0	v	2,00	×	× 8	0.02	< 0.05	0.44		n	0.05	1 33	42.2	10559.8	105.6	929.3	105.6	4223.9	2806.8	6 142	154R16	U PUCARO	0 200900	C85020
2282 4/15/2012 21:05	12 21:05	118.0	v	2,00	< 5.0	× Q	0.02	< 0.05	0.17	2	80	0.02	1.46	12.7	3178.7	31.8	108.1	12.7	1271 5	1.059	9.1.5	154816	020532 0	CONGGR R	21 F-05
1465 3/16/2014 9:35	4 9:35	313.0			< 5.0	× 8	0.02	< 0.05	0.14	5	37 <	0.02		33.7	8431.7	843	237.8	33.7			241 9	154816	054462 0	001536 0	000218
1910 4/4/2014 9:40	4 9:40	619.0			5.0	× 00	0.02	< 0.05	0.19	m	13 <	0.02		66.7	16674.7	166.7	643.6	66.7			241.9	154816 0	0 107707 0	004157 0	000431
2621 5/8/2014 17:35	4 17:35	137.0			< 5.0	~ 00	0.02	0.06	0.18	m	× 19	0.02		14.8	3690.5	44.3	135.1	14.8			241.9	154816 0	0 23838 0	000872 9.	54E-05
2622 5/8/2014 17:35	4 17:35	137.0			< 5.0	v 8	0.02	< 0.05	0,18	m	61 <	0.02		14.8	3690.5	36.9	132.1	14.8			241.9	154816 0	0 969620	6 ES8000	54E-05
				2.00	5.0	R	0,020	0.05	0.47	ri	8	3E0.0	1.12	23.8	5939.9	59.4	530.6	55.4	2375.9	1524.4			D.D3R4	0 01500	0,0004
				2.00	5.0	8	0,020	0.05	0.44	н Н	8	0 020	0.92	53	1320.0	13.2	132.0	5.3	528.0	242.1			0.0085	0000	0.000
				2,00	5.0	8	0,020	0.05	0.50	H	80	0.050	1.33	42.2	10559.8	105.6	929.3	105.6	4223.9	2806.8			0 0682	0.0060	0.0007
				0	0	~	0000	0	0.0424	26 #DI	10/1	0.021	0.291328	26.1	6533.5	65.3	563.8	20.9	2613.4	1813.5			0.0477	0 0036	0000
				2.00	5.0	2	0,020	0.05	0.47	1.	06	0,035	1.12	23.8	5939,9	59.4	530.6	55.4	2375,9	1524.4			0.0384	0.0034	0.0004
				2	2		2.000	2	2			2,000	2	20	2.0	2.0	2.0	2.0	2.0	2.0			2.0000	2.0000	2,0000
				2.00	17 0	8	0 03	0,05	0.24	m	73	0.05	2 20	278.26	241026.85	245,91	2029.77	675.33	18684.34	26942 33			1.5569	0.0131	0.0044
				2.00	5.0	8	0.02	0.05	0,14	24	80	0.02	1,46	12 71	3178.71	31 79	108.08	12.71	1271.48	930.09			0.0205	0 0007	0.0001
				2.00	65 (8	0 07	0,06	0.50	ŝ	37	0.18	2,93	1263 40	1173158.61	902.43	9024.30	3248.75	36097 19	52954,57			7.5778	0.0583 0	0.0210
				0	26.83	1282	0,022361	0.00447	2 0 1480	92 1,14	3336	0 071554175	1.040154	551,1361	521105.62	370.7755	3915 954	1438 747	24625.49	36786.87			3.3660	0.0253 0	0.0093
				2.00	5.0	0	0.02	0,05	0.18	'n	38	0.02	2.20	ET EE	8431 66	84.32	237.77	33.73	18684.34	26942.33			0.0545	0.0015	0.0002
				2	ŝ		ŋ	ភ	S	,		ហ	2	ŝ	ŝ	'n	ŝ	ហ	2	2			2.0000	5.0000 S	5,0000
																				Load-NO3-					
																		Load-TSS	EHN-beol	NO2-N	Load-TP				
																		(p/qI)	(p/q)	(p/q)	(p/ql)				
																	75 F	1173159 475550 E	902 4297	9024 297	3248 747				
																	55	248424 1	234,3623	2343,623	1359,302				
																	MFC-1	1366456	419.1584	4191 584	3269 435				
																		2/5/98-	53 84353	636,4353	-2564 41				

Buckhorn C	k (BH-1)																									
Sample		Control		Sample		đ		1							Phosphore	,4 se suo	Load- OrhtoP	Load-TSS L	EHN-peo 1	oad-NO3- NO2-N I	ad-TP	WS-area	WS-area	TSS- N	-20N-EC	é
adyi	Sample (D	Number	Sample Date	Time	Flow (cfs)	T55,	mg/L	PO, as P	mg/L	NH3 as N	1. me/L	NO,+NO, as N, mg/L	Chloride,	mg/t	12m	T	(p/q)	(p/qi)	(p/q)	(Ib/d)	(IP/qI)	(mi2)	(Acres)	lb/acre	b/acre	b/acre
Storm Evel	1118	14-01469	3/15/2014	13/55	56.4	*	5,00	*	0.02	¥	0.05	0.38		1.36		0.03	61	1519 B	15 2	114.3	1 6	5.8	3712 0	409298 0	0 9779 0	002456
Storm Ever	1.HB	14-01914	a/a/2014	13:25	20.9	*	5.00		0.02	v	0.05	0.16		1.35	*	0.02	2.3	563.0	56	18.2	23	8.5	3712	151673 0	0.04914 0	000607
Storm Evel	80.1	14-02514	5/8/2014	18:00	E	•	5,00		0.02		0.05	0.12		1.37	v	0.02	0.1	35.0	0.4	0.8	0.1	5.8	3712 (0 45434 0	D00221 3	77E-05
Storm Now	Viennus																									
Average					26.20		5 00		0.020		0.05	0.2	~	1.36		0.023	2.823	705.781	7 058	44,438	3 836			0.190	0.012	00.00
Min					1 30		5.00		0 020		0.05	0.1.	2	1.35		0.020	0.140	35.020	0.350	0.819	0 140			6000	0000	0.00
Max					56 40		5.00		0 020		0.05	0.3	60	1E.1		0.030	6.077	1519 314	15.193	114.252	9 116			0.409	1.60.0	0.002
Stdev					27.92973		0		0 000		0.00	0.1	*	0.01		0 006	3 010	752,377	7.524	61.086	4.693			E02 0	0.016	0.001
Median					20.90		5 00		0.020		0.05	0.1	2	1.36		0.020	2 252	563.008	5 630	18 241	2.252			0.152	0.005	0.001
					m		ŝ		3.000		3.00	3.01	~	3.00		3.000	3.000	3 000	3 000	3.000	000 E			3 000	3.000	000 E

Appendix C USA Field Data Forms

Approved by:	GLP	GRMC	Project No.:	4095-13-800
Checked by:	GLP		Date:	09/19/2014
Drawn by:	ACT	219 Brown Lane Bryant, Arkansas 72022	Scale:	SHOWN

1.5 Miles

Unified Stre	ream Assessment (USA)
REACH ID: STREAM: Little	Lee CV DATE/TIME: INITIALS:
REACH START MON 225 238	REACH END 291 4 JAD
LAT:	LAT:
LONG:	LONG:
Average	Conditions (check applicable)
Weather - Antecedent (24-h) Rain in past 72-h:	n: y (n) Weather – Current conditions
□Heavy rain □Steady rain □Showers □Clear/s □Mostly cloudy ☑Partly cloudy P+ ᡬu h \()	/sunny Heavy rain Steady rain Showers Clear/sunny
Stream Classification	Stream Origin /
Perennial Intermittent Ephemeral Tic	idal
Coldwater Coolwater Warmwater Order	r Montane (non-glacial) Swamp/bog Other
Hydrology	
Flow: High Moderate Low None	50-34
Base Flow as %Channel Width: 0-25% 50-	-75% ∑25-50% ∏75-100% Flows Measured : Yes //No)
Stream Gradient: ☐ High (≥25ft/mi)	rate (10-24 ft/mi) 🗹 Low (<10 ft/mi) ~Slope;ft/mi
Sinuosity: 🔲 High 🕅 Moderate 🗌 Low	
Channel Morphology	System: Step/Pool - Riffle/Pool - Pool (circle)
	<u>20</u> % □ Steps%
□Silt/clay (fine or slick) □Cobble (2.5-10") / □Sand (gritty) □Boulder (>10") □Gravel (0.1-2.5") □Bed Rock	Woody Debris Root Wads Leaf Packs Deposition Undercut Bank Aquatic Plants Overhanging Vegetation Habitat Quality: Poor Fair Cood Optimal
Land use	Local Watershed NPS Pollution
K Forest <u>60</u> % K Pasture <u>40</u> % □ Urban	u% □ Industrial Storm Water
Commercial % Row Crops %	Urban/Sub-Urban Storm Water
Hay% [] Industrial% [] Sub-Urba	an%
Riparian Buffer	
Vegetation Type: 🖌 Forest 75_% 💢 Shrub/Sap Riparian Width: 🔤 <10 ft 🔤 11-25 ft 🔤 20	pling <u>\5_%</u> Herbs/Grasses <u> </u>
Stream Shading (water surface)	
☐Mostly shaded (≥75% coverage)	artially shaded (≥25% coverage)
☐Halfway shaded (≥50% coverage) ☐Ún	nshared (<25% coverage)
Water Quality Observations	
Odors Noted:	Water Surface Appearance:
Petroleum Chemical Eishy Other	☐ Slick ☐ Sheen ☐ Globs
,Turbidity/Water Clarity:	
Clear Slightly turbid	
Opaque Stained	□ Other
Sediment Deposits: None [] Sludge	Sawdust Oils Sand Relict shells

USA Rea	ich Impact Data Detail Si	heet (optional)	
Reach ID/Stream:	Date:	Initials:	

Impact I.D. ¹	Coordinates (Lat / Long) or Waypoint	Severity (1-3) ²	Restoration Opportunity (1-3) ³	Description
IB	239			Pasture Buller 225'wide
UT	294		1	T-)Ime
56	294			see where trall is
M	297	l		T-linelcable?

Impact I.D. ¹	Coordinates (Lat / Long) or Waypoint	Bank Erosion Hazard	Bank Lth. (ft)	Rest. Opp. (1-3) ³	Bank information for BEHI
ER	290	L M H VH EX (circle one)	400	2	Bank: Heightft, AngleDeg Protection: Roots%, Root Depthft Vegetation% grading Gilling Material: Silt/Clay Sand / Gravel Cobble - % @O
ĒR	242-293	L M H VH EX (circle one)	~200	ł	Bank: Height <u>12</u> + ft, Angle <u>75</u> Deg Protection: Roots <u>20</u> %, Root Depth <u>7</u> ft Vegetation <u>40</u> % ⁴ Material: Silt/Clay Sand / Gravel Cobble + %
ER	244 100° RB-N 100°	L M H VH EX (circle one)	100	2	Bank: Height <u>1</u> ft, Angle <u>Deg</u> Protection: Roots <u>4</u> , Root Depth <u>7</u> ft Vegetation <u>70</u> % ⁴ Material: Silt/Clay Sand / Gravel Cobble - % 4
ER	294-24B	L M H VH EX (circle one)			Bank: Height <u>13</u> ft, Angle <u>Deg</u> Protection: Roots <u>30</u> %, Root Depth <u>5</u> ft Vegetation <u>50</u> % ⁴ Material: Sitt/Clay Sand / Gravel Cobble - %
ER	248-249	L M H VH EX (circle one)		1.5	Bank: Heightft, Angle Deg Protection: Roots%, Root Depthft Vegetation% ⁴ Material: Silt/Clay Sand / Gravel Cobble - %

Impacts: Outfall(OT), Bank Erosion(ER), Impacted buffer(IB), Utilities in channel(UT), Stream crossing(SC), Channel modification(CM), Trash in stream(TR), other.
 ² Severity: 1=minor, 2=moderate, 3=severe
 ³ Restoration Potential: 1=minimal, 2=moderate, 3=high
 ⁴ Bank material: circle base type, silt/clay or sand and if present circle rock type and note %.

Modified from *Unified Stream Assessment: A Users Manual*, (Kitchall & Schuller, 2004) Page 2 of 3

	USA,	Cont.	
REACH ID:	STREAM:	DATE/TIME:	INITIALS:
Little Lee Creve K	LLC-L	6/5/14/100	I GLP/ENJ
JTHER INFO.			
	Average Conditions (c	heck applicable)	
Flood Plain Dynamics			
Connection:	Good Vegetation:	Forest X Shrub/Sapling Poor Fair A Goo] Tall grasses 🔲 Turf/crops od
Periphyton (attached algae): Filamentous:	arse Moderate Abundant arse Moderate Abundant arse Moderate Abundant	Suspended Algae (phy None noticeable (wa Moderate (water slip Abundant (water app	r toplankton) abundance: ter basically clear) ghtly green tinted) pears green)
Aquatic Plants In Stream: Submerged: None Spi Emergent: None Spi Floating: None Sp	arse 🗌 Moderate 📄 Abundar arse 🗋 Moderate 💭 Abundar arse 🔲 Moderate 🗍 Abundar	nt nt nt	
Aquatic Life Observed: AFish ASnails ACrawfish	Macroinvertebrates	/ildlife/Livestock In or Arour]Cattle □Beaver Deer	nd Stream (evidence of):
Reach Impacts: (circle impact Outfalls(OT): 1 2 3 Wpt Stream Crossing(SC): 1 2 Bank Erosion(ER): 1 2 3 Channel Modification(CM): 1 Notes:	Ievel 1=minor, 2=moderate, 3=maj	or, and tag with a GPS waypo icted Buffers(IB): 1 2 3 W h(TR): 1 2 3 Wpties(UT): 1 2 3 Wpt ies(UT): 2 3 Wpt: 1 2	int(s) (Wpt) ID) pt - 3 Wpt
f any of these impacts are signif	ficant use back of page 1 (pg. 2) for	detailed description.	
Channel Dynamics:	hannelized ggrading Bank Failure Sank scour Slope failure	Sediment Deposition Culvert Scour (upstrea None (natural stabile of	ım / downstream / top) channel)
Channel Dimensions (facing d	lownstream):	· ·	
t bank Ht:(ft) Bank Rt bank Ht:(ft) Bank	full Depth(ft) Wetted V	Midth: 409å. (ft) Riffle/I dth: 409å. (ft) Pool D	Run Depth <u>1,2</u> (ft) epth (ft)
Channel Stability:	Dry 50y	5440.	
t Bank: Angledeg	grees R	t Bank: Angled	egrees
Bank Vegetation protection	% cover R	tBank Vegetation protection _	% cover
Bank Erosion Hazard: L M	H VH EX (circle one) R	tBank Erosion Hazard: L M	H VH EX (circle one)
Not(s):	Ľ	Vot(s):	
each Accessibility For Resto	ration	1 (-7)	
Sood: Open area in public ownersh Easy stream channel access by veh	nip. Fair: Forested or developed ne stream. Vehicle access limited.	ar Difficult: Must cross wetla sensitive areas to get to str	nd, steep slope, heavy forest or eam. Access by foot/ATV only.
5	4 (3)	2 1	
Votes: (biggest problem(s) you see	in survey reach)	Restoration Potential: □Riparian reforestation □Stormwater retrofit □Channel modification □Culvert rehab.	Bank stabilization Outfall stabilization PS investigation Other
Place sketch of reach on back of	page.		

Unified Stream	m Assessment (USA)
REACH ID: JC-1 STREAM: Jenkins	CH. DATE/TIME: INITIALS: NEJ
REACH START WP 218	REACHEND UP-228
LAT:	AT:
LONG:	LONG:
Average Con	nditions (check applicable)
Weather - Antecedent (24-h) Rain in past /2-h: y	Meather - Current conditions
Heavy rain Steady rain Showers Clear/sun	Mostly cloudy Partly cloudy / Bud L (14) by
Mostly cloudy Partly cloudy many sum y	Charges Origin
Stream Classification	Stream Origin
	Montano (non-glacial) Swamp/bog Other
Coldwater Coolwater Warmwater Order	
Hydrology Flow: ☐ High ⊠ Moderate ☐ Low ☐ None Base Flow as %Channel Width: ☐0-25% ⊠50-75 Stream Gradient: ☐ High (≥25ft/mi) ⊠ Moderate	%
Sinuosity: High K Moderate Low	System: Sten/Pool - Riffle/Pool - Pool (circle)
Channel Morphology	System. Steph our - ramen our - too (short)
Riffle 45_% Run 20_% Pool	% [_] Steps%
Dominant Substrate Silt/clay (fine or slick) Sand (gritty) Gravel (0.1-2.5")	Dominant In-Stream Habitats Woody Debris Root Wads Leaf Packs Deposition Undercut Bank CObble Aquatic Plants Overhanging Vegetation Habitat Quality: Poor Fair Good Optimal
L and use	Local Watershed NPS Pollution
M Earort DD % □ Basture % □ Urban	% Industrial Storm Water
	/
Hay% Industrial% Sub-Urban	
Riparian Buffer Vegetation Type: ✓ Forest ✓ % ✓ Shrub/Saplin Riparian Width: <10 ft □11-25 ft □ 26-	ng 10 % Herbs/Grasses 10 % [] Turf/Crops%
Stream Shading (water surface)	
Mostly shaded (>75% coverage)	ially shaded (≱5% coverage)
MHalfway shaded (≥50% coverage) □Uns	hared (<25% coverage)
Water Quality Observations	
Odors Noted:	Water Surface Appearance:
Normal/None Sewage Anaerobic	🗌 Slick 🦾 💭 Sheen 🔛 Globs
Petroleum Chemical Fishy Other	Flecks None Other
Turbidity/Water Clarity:	
Clear Slightly turbid	
🗋 Opaque 🔤 Stained	U Other
Sediment Deposits: None Sludge	Sawdust 🗌 Oils 🗌 Sand 🗌 Relict shells

USA Reach Impact Data Detail Sheet (optional)						
Reach ID/Stream:	Date: 6 4114	Initials:				

impact I.D. ¹	Coordinates (Lat / Long) or Waypoint	Severity (1-3) ²	Restoration Opportunity (1-3) ³	Description
51	230			lots of proston on KB there In Flowd way
other	225	1.5	1,5	Possible head cut in riffle
Ē				
				0
	-			Jul

Impact I.D. ¹	Coordinates (Lat / Long) or Waypoint	Bank Erosion Hazard	Bank Lth. (ft)	Rest. Opp. (1-3) ³	Bank information for BEHI
ER	wpt 219 20	L M H VH EX (circle one)	GJ yd	de la constante	Bank: Height <u>5</u> ft, Angle <u>85</u> Deg Protection: Roots <u>85</u> %, Root Depth <u>3</u> ft Vegetation <u>40</u> % <u>814</u> <u>104</u> ⁴ Material: Silt/Clay Sand)/ Gravel Cobble %
ER	vet 220	L M H VH EX (circle one)	4000	2	Bank: Heightft, AngleO Deg Protection: Roots%, Root Depthft Vegetation% ⁴ Material: Silt/Clay Sand / Graver Cobble - %30
ER	2.29	L M H VH EX (circle one)	834		Bank: Heightft, AngleO Deg Protection: Roots%, Root Depth5 ft Vegetation% ⁴ Material: Silt/Clay Sand / Gravel Cobble- %
ER	223-24 LB	L M H VH EX (circle one)	~300	l	Bank: Heightft, AngleO Deg Protection: Roots%, Root Depthft Vegetation% ⁴ Material: Silt/Clay Sand Gravel Cobble - %35
ER	9910-9955	L M H VH EX (circle one)	~ 700		Bank: Height 0.5 ft, Angle 0 Deg Protection: Roots 30 %, Root Depth 5 ft Vegetation 40 % (24 m ⁴ Material: Silt/Clay Sand / Gravel Cobble - % 45

Impacts: Outfall(OT), Bank Erosion(ER), Impacted buffer(IB), Utilities in channel(UT), Stream crossing(SC), Channel modification(CM), Trash in stream(TR), other.
 ² Severity: 1=minor, 2=moderate, 3=severe
 ³ Restoration Potential: 1=minimal, 2=moderate, 3=high
 ⁴Bank material: circle base type, silt/clay or sand and if present circle rock type and note %.

^{*} Modified from Unified Stream Assessment: A Users Manual, (Kitchall & Schuller, 2004) Page 2 of 3

REACH ID:	STREAM		
THER INFO	Den Kins Cle	DATE/TIME:	INITIALS:
And the other states and the states			
	Average Conditions (c	heck applicable)	
T lood Plain Dynamics Connection:	air Good Vegetation: X air Q Good Encroachment:	Forest □ Shrub/Sapling □ □ Poor □ Fair 又Go] Tall grasses 🔲 Turf/crops od
Periphyton (attached algae) ilamentous: V None S rostrate None S loating None S	Sparse Moderate Abundant Sparse Moderate Abundant Sparse Moderate Abundant	Suspended Algae (ph X None noticeable (wa Moderate (water sl Abundant (water ap	ytoplankton) abundance: ater basically clear) ightly green tinted) opears green)
Aquatic Plants In Stream: Submerged: None S mergent: None S Toating: None S	Sparse Moderate Abundan Sparse Moderate Abundan Sparse Moderate Abundan Sparse Moderate Abundan	ıt ıt ıt	
Quatic Life Observed: AFish Snails Crawfi	sh Macroinvertebrates	'i ldlife/Livestock In or Arou]Cattle □Beaver □Deer	Other Song &
Reach Impacts: (circle impa Outfalls(OT): 1 2 3 Wpf Stream Crossing(SC): 1 2 Mank Erosion(ER): 1 2 Channel Modification(CM): Notes:	ct level 1=minor, 2=moderate, 3=majo Impa 2 3 Wpt Tras 3 Wpt <u>Sec.ch</u> Utiliti 1 2 3 Wpt Othe	or, and tag with a GPS wayp cted Buffers(IB): 1 2 3 W h(TR): 1 2 3 Wpt es(UT): 1 2 3 Wpt r1 2	oint(s) (Wpt) ID) //pt 3 Wpt
f any of these impacts are sig Channel Dynamics: Incised (degrading) Widening Headcuttingson Sport	nificant use back of page 1 (pg. 2) for Channelized Aggrading Bank Failure Bank scour Slope failure	detailed description Sediment Deposition Culvert Scour (upstre None (natural stabile	am / downstream / top) channel)
Channel Dimensions (facing t bank Ht:(ft) Ba Rt bank Ht:(ft) Ba	nkfull Depth <u>₹1.4/1.4</u> (ft) Wetted V nkfull Width <u>56/58</u> (ft)) TOB Wid	Width: <u>28/45 (</u> ft) Riffle dth: <u>19/85 (</u> ft) Pool D	/Run Depth
Channel Stability: t Bank: Angle o tBank Vegetation protection: tBank Erosion Hazard: L M length Lt Bank Affected: Vpt(s):	legrees R % cover R / H VH EX (circle one) R Le W	t Bank: Angle tBank Vegetation protection tBank Erosion Hazard: L _ M ength Rt Bank Affected: /pt(s):	degrees % cover // H VH EX (circle one)
Reach Accessibility For Res	toration		
Good: Open area in public owne asy stream channel access by v	rship. Fair: Forested or developed nea ehicle, stream. Vehicle access limited.	ar Difficult: Must cross wetl sensitive areas to get to st	and, steep slope, heavy forest or tream. Access by foot/ATV only.
5 lotes: (biggest problem(s) you s	4 3 (ee in survey reach)	Restoration Potential: Riparian reforestation Stormwater retrofit Channel modification Culvert rehab.	■ Bank stabilization □ Outfall stabilization □ PS investigation □ Other

Unified Strea	im Assessment (USA)
REACH ID: STREAM:	DATE/TIME: 345 INITIALS:
REACH START	REACH END
LAT:	LAT:
LONG:	LONG:
Average Co	nditions (check applicable)
Weather – Antecedent (24-h) Rain in past 72-h: y	/ n Weather - Current conditions
☐ Heavy rain ∐Steady rain ∐Showers ∐Clear/sur	nny
Character Close if said	Stream Origin
Stream Classification	Stream Origin
Coldwater Coolwater Warmwater Order	Montane (non-glacial) Swamp/bog Other
Base Flow as %Channel Wigth: 0-25%50-75	10-24 ft/mi) Π Low (<10 ft/mi) ~Slope:
Sinuosity: High X Moderate Low	
Channel Morphology	System: Step/Pool Riffle/Pool - Pool (circle)
\square Riffle $\underline{40}$ % \square Run $\underline{15}$ % \square Pool $\underline{45}$	%
Dominant Substrate	Dominant In-Stream Habitats
Silt/clay (fine or slick)	Woody Debris MRoot Wads Leaf Packs
$\Box \text{Sand (gritty)} \qquad \Box \text{Boulder (>10")} \forall \mathcal{D}^{\text{Cravel}}$	Advis Aquatic Plants Overhanging Vegetation
	Habitat Quality: Poor Fair Sood Optimal
	Local Watershed NPS Pollution
│ └┴ Forest% └ │ Pasture% └ │ Urban	% [_] Industrial Storm Water
Commercial% Row Crops%	Urban/Sub-Urban Storm Water
Hay% [] Industrial% [] Sub-Urban_	% Cattle Other XNo evidence
Riparian Buffer	
Vegetation Type: \square Forest $\frac{30}{2}$ % \square Shrub/Saplin	ng 10 % 🖾 Herbs/Grasses 10 % 🔲 Turf/Crops%
	50 ft > 50 ft
Stream Shading (water surface)	
Halfway shaded (250% coverage)	ally snaued (<25% coverage)
Water Quality Observations	
Odors Noted:	Water Surface Appearance:
Normal/None Sewage Anaerobic	Slick Sheen Globs
Petroleum 🗌 Chemical 🔲 Fishy 🔲 Other	Flecks 🛛 None 🗌 Other
Turbidity/Water Clarity:	
Clear Slightly turbid	Turbid
☐ Opaque	Other
Sediment Deposits: None Sludge	Sawdust 🔲 Oils 🗌 Sand 🗌 Relict shells

۸

	USA Reach Impact Data D	Detail Sheet (optional)	
Reach ID/Stream:	Date:	Initials	5:

Reach	ID/	Э	τι	ea	m	Ē,
		1	L	C	_	'

Impact I.D. ¹	Coordinates (Lat / Long) or Waypoint	Severity (1-3) ²	Restoration Opportunity (1-3) ³	Description
9L	22))	l	UTV trait (crossis
56	235	and the second se		Min trail

Impact I.D. ¹	Coordinates (Lat / Long) or Waypoint	Bank Erosion Hazard	Bank Lth. (ft)	Rest. Opp. (1-3) ³	Bank information for BEHI
ER	RB 230-1	L M H VH EX (circle one)	7300	1	Bank: Heightft, Angle Deg Protection: Roots%, Root Depth 4ft Vegetation5% ⁴ Material: (Silt/Clay, Sand / Gravel Cobble _%25
ER	2326	L M H VH EX (circle one)	~250	1	Bank: Heightft, AngleDeg Protection: Roots%, Root Depthft Vegetation%%% ⁴ Material: Silt/Clay Sand / Gravel Cobble - %
ER		L M H VH EX (circle one)			Bank: Heightft, AngleDeg Protection: Roots%, Root Depthft Vegetation% ⁴ Material: Silt/Clay Sand / Gravel Cobble - %
ER		L M H VH EX (circle one)			Bank: Heightft, AngleDeg Protection: Roots%, Root Depthft Vegetation% ⁴ Material: Silt/Clay Sand / Gravel Cobble - %
ER		L M H VH EX (circle one)			Bank: Heightft, AngleDeg Protection: Roots%, Root Depthft Vegetation% ⁴ Material: Silt/Clay Sand / Gravel Cobble - %

Impacts: Outfall(OT), Bank Erosion(ER), Impacted buffer(IB), Utilities in channel(UT), Stream crossing(SC), Channel modification(CM), Trash in stream(TR), other.
 ² Severity: 1=minor, 2=moderate, 3=severe
 ³ Restoration Potential: 1=minimal, 2=moderate, 3=high
 ⁴ Bank material: circle base type, silt/clay or sand and if present circle rock type and note %.

* Modified from Unified Stream Assessment: A Users Manual, (Kitchall & Schuller, 2004) Page 2 of 3

	U	SA, Cont.	
REACH ID:	STREAM:	DATE/TIME:	INITIALS:
	Liftie Lee Cit	1 (p / q) (F	
OTHER INFO:			
	Average Condit	tions (check applicable)	
Flood Plain Dynamics			
Connection: Poor [Habitat: Poor]	☐ Fair	on: 凇 Forest □ Shrub/Sapling chment: □ Poor □ Fair ↗	☐ Tall grasses ☐ Turf/crops Good
Periphyton (attached alg Filamentous: Onone Prostrate: None Floating: None	g ae): X Sparse Moderate Ab Sparse Moderate Ab Sparse Moderate Ab	Suspended Algae (j bundant None noticeable (bundant Moderate (water bundant Abundant (water	phytoplankton) abundance: water basically clear) slightly green tinted) appears green)
Aquatic Plants In Stream Submerged: None Emergent: None (Floating: None	n: Sparse Moderate A Sparse Moderate A Sparse Adderate A	bundant bundant bundant	
Aquatic Life Observed:	awfish	Wildlife/Livestock In or Ar	ound Stream (evidence of): erOther
Reach Impacts: (circle i Outfalls(OT): 1 2 3 Stream Crossing(SC):/ Bank Erosion(ER) : 1 Channel Modification(C Notes:	mpact level 1=minor, 2=moderate, Wpt 1 2 3 Wpt 2 3 Wpt :M): 1 2 3 Wpt	.3=major, and tag with a GPS way Impacted Buffers(IB): 1 2 3 Trash(TR): 1 2 3 Wpt Utilities(UT): 1 2 3 Wpt Other: 1	ypoint(s) (Wpt) ID) Wpt 2 3 Wpt
If any of these impacts are	e significant use back of page 1 (p	g. 2) for detailed description.	
Channel Dynamics: Incised (degrading) Widening Headcutting	☐ Channelized ☐ Bed Sc ☐ Aggrading ☐ Bank F ☐ Bank scour ☐ Slope f	cour Sediment Depositio Failure Culvert Scour (upst failure None (natural stabi	on ream / downstream / top) ile channeł)
Channel Dimensions (fa Lt bank Ht: <u>5</u> (ft) Rt bank Ht: <u>6</u> (ft)	cing downstream): Bankfull Depth <u>ルタルッち</u> (ft) V Bankfull Width <u>客灯ゆみ(</u> ft)) T	Vetted Width: <u>57/13) (</u> ft) Riff FOB Width: <u>105/30 (</u> ft) Poo	fle/Run Depth <u>0.5</u> (ft) I Depth_ <u>2.5</u> (ft)
Channel Stability: Lt Bank: Angle LtBank Vegetation protect LtBank Erosion Hazard: I Length Lt Bank Affected: Wpt(s):	degrees tion:% cover M H VH EX (circle one)	Rt Bank: Angle RtBank Vegetation protectio RtBank Erosion Hazard: L Length Rt Bank Affected: Wpt(s):	_ degrees n% cover M H VH EX (circle one)
Reach Accessibility For	Restoration		
Good: Open area in public o Easy stream channel access	wnership. Fair: Forested or develo by vehicle. stream. Vehicle access	oped near Difficult: Must cross w limitedsensitive areas to get to	etland, steep slope, heavy forest or stream. Access by foot/ATV only.
5	4 3	(2)	1
Notes: (biggest problem(s) y	you see in survey reach)	Restoration Potenti Riparian reforestat Stormwater retrofit Channel modificati Culvert rehab.	al: tion X Bank stabilization Outfall stabilization Other
Place sketch of reach on b	ack of page.		

Unified Stream	Assessment (USA)
REACH ID: UC- STREAM:	DATE TIME: INITIALS: GLP NEJ
EACH START NOT 250/251 REA	CH END /
AT: time LAT:	
ONG: Degaer - 1334 +14 14 (orm) LON	G:
1-67440	
Average Conditi	ons (check applicable)
Heavy rain Steady rain Showers Clear/sunny	Weather - Current conditions
Interem Classification	Stream Origin
Perennial Intermittent Ephemeral Tidal Coldwater Coolwater Warmwater Order	Spring-fed Mixture of origins Glacial
<u>tydrology</u> Flow: ☐ High X Moderate ☐ Low ☐ None	5-32
Base Flow as %Channel Width: 0-25% 50-75%	25-50% 75-100% Flows Measured: Yes /No
Stream Gradient: High (≥25ft/mi)	-24 ft/mi) Low (<10 ft/mi) ~Slope:ft/m
Sinuosity: 🔲 High 🛄 Moderate 🗌 Low	Quetame Oter /Deal Official Deal (airs)
Channel Morphology	System: Step/Pool - Riffie/Pool - Pool (Circle
\mathbb{Z} Riffle $\underline{40}$ % \mathbb{Z} Run $\underline{2}$ % \mathbb{Z} Pool $\underline{52}$ %	5 Steps%
Silt/clay (fine or slick) Sand (gritty) Gravel (0.1-2.5")	□ Deposition □ Undercut Bank □ Deposition □ Undercut Bank □ Deposition □ Undercut Bank □ Deposition □ Deposition □ Overhanging Vegetation □ Deposition □ Deposit
Land use	Local Watershed NPS Pollution
Forest 90 % Pasture 10_% 🗆 Urban	% Industrial Storm Water
Commercial % Row Crops %	🔲 Urban/Sub-Urban Storm Water 🛛 🔲 Row crops
☐ Hay% ☐ Industrial% ☐ Sub-Urban	_% Cattle Other No evidence
Riparian Buffer Vegetation Type: Forest 70% Shrub/Sapling 7	5 % \mathbb{A} Herbs/Grasses 5 % \mathbb{D} Turf/Crops%
Stream Shading (water surface) □Mostly shaded (≥75% coverage) □Partially □Halfway shaded (≥50% coverage) □Unshare	shaded (≥25% coverage) ed (<25% coverage)
Water Quality Observations	
Odors Noted:	Water Surface Appearance:
Normal/None Sewage Anaerobic	
Petroleum L Chemical Fishy Other	
Turbidity/Water Clarity:	
Clear Slightly turbid	
Opaque Stained	Other
<u> </u>	

USA Reach Impact Data Detail Sheet (optional)						
Reach ID/Stream: WC-	Date:	Initials:				

Impact I.D. ¹	Coordinates (Lat / Long) or Waypoint	Severity (1-3) ²	Restoration Opportunity (1-3) ³	Description
ut	254 (alle)	١	1	D-Ime Crossics
n4				
		-station - state - sta	+	
1.00				

Impact I.D. ¹	Coordinates (Lat / Long) or Waypoint	Bank Erosion Hazard	Bank Lth. (ft)	Rest. Opp. (1-3) ³	Bank information for BEHI
ER	252B	L M H VH EX (circle one)	100	2	Bank: Height 5.5 ft, Angle 85 Deg Protection: Roots 40 %, Root Depth 2.5 ft Vegetation 70 %, Root Depth 2.5 ft ⁴ Material: Silt/Clay Sand / Gravel Cobble %70
ER	253-254	L M H VH EX (circle one)	~	1	Bank: Heightft, AngleDeg Protection: Roots%, Root Depthft Vegetation5% //// ⁴ Material: Silt/Clay Sand /Gravel Cobble) %
ER	255	L M H VH EX (circle one)	00/	1.	Bank: Height <u>5</u> ft, Angle <u>80</u> Deg Protection: Roots <u>20</u> %, Root Depth <u>2.5</u> ft Vegetation <u>30</u> %
. ER		L M H VH EX (circle one)			Bank: Heightft, AngleDeg Protection: Roots%, Root Depthft Vegetation% ⁴ Material: Silt/Clay Sand / Gravel Cobble - %
ER		L M H VH EX (circle one)			Bank: Heightft, AngleDeg Protection: Roots%, Root Depthft Vegetation% ⁴ Material: Silt/Clay Sand / Gravel Cobble - %

¹ Impacts: Outfall(OT), Bank Erosion(ER), Impacted buffer(IB), Utilities in channel(UT), Stream crossing(SC), Channel modification(CM), Trash in stream(TR), other.
 ² Severity: 1=minor, 2=moderate, 3=severe
 ³ Restoration Potential: 1=minimal, 2=moderate, 3=high
 ⁴Bank material: circle base type, silt/clay or sand and if present circle rock type and note %.

Modified from Unified Stream Assessment: A Users Manual, (Kitchall & Schuller, 2004) Page 2 of 3

V 1.4 October 2011

		USA, C	JIII.	1
REACH ID: WC-1	STREAM:	11.	GISTIGE:	GARINES
OTHER INFO:				
	Average	e Conditions (che	ck applicable)	
Connection: Poor Fair Habitat: Poor Fair	Good	Vegetation: Kegetation: Kegeta	rest 🖾 Shrub/Sapling] Poor 🔲 Fair 🔲 G	Tall grasses 🗌 Turf/crops
Periphyton (attached algae): Filamentous: None Spa Prostrate: None Spa Floating: None Spa	nrse Doderate Irse Moderate Irse Moderate	e 🗌 Abundant e 🗋 Abundant e 🗋 Abundant	Suspended Algae (p None noticeable (v Moderate (water Abundant (water a	hytoplankton) abundance: water basically clear) slightly green tinted) appears green)
Aquatic Plants In Stream: Submerged: None Spa Emergent: None Spa Floating: None Spa	arse 🗌 Moderate arse 🔲 Moderate arse 🗌 Moderate	e 🗌 Abundant e 🗌 Abundant e 🔲 Abundant		
Aquatic Life Observed: DFish DSnails DCrawfish	Macroinvertebr	rates Wild	llife/Livestock In or Arc attle Deaver Does	ound Stream (evidence of): r
Reach Impacts: (circle impact I Outfalls(OT): 1 2 3 Wpt Stream Crossing(SC): 1 2 Bank Erosion(ER): 1 2 3 Channel Modification(CM): 1 Notes:	evel 1=minor, 2=m 3 Wpt Wpt 2 3 Wpt	noderate, 3=major, Dimpacte Trash(Utilities Other_	and tag with a GPS way ed Buffers(IB) 1 2 3 (IR): 1 2 3 Wpt (UT) 1 2 3 Wpt (UT) 1 2 3 Wpt 1	point(s) (Wpt) ID) Wpt_alon_Rd./Restur 2 3 Wpt
If any of these impacts are signifi Channel Dynamics: Incised (degrading) Widening Headcutting Ba	cant use back of p hannelized ggrading ank scour	age 1 (pg. 2) for de Bed Scour Bank Failure Slope failure	etailed description.	n ream / downstream / top) le channel)
Channel Dimensions (facing de Lt bank Ht:(ft) Bank Rt bank Ht:(ft) Bank	ownstream): full Depth <u>1,4/</u> 3 full Width(<u>e</u> 2/18	(ft) Wetted Wid (ft)) TOB Width	th:43/20 (ft) Riff	le/Run Depth 0,5 (ft) I Depth 3.5 (ft)
Channel Stability: Lt Bank: Angledeg LtBank Vegetation protection: LtBank Erosion Hazard: L M Length Lt Bank Affected: Wpt(s):	rees % cover H VH EX (cir	Rt E RtBa cle one) RtBa Len Wpt	ank: Angle ank Vegetation protectio ank Erosion Hazard: L gth Rt Bank Affected: (s):	_degrees n% cover M H VH EX (circle one)
Reach Accessibility For Resto	ration	-		
Good: Open area in public ownersh Easy stream channel access by vehi	ip. Fair: Forester cle. stream. Vehic	d or developed near cle access limited.	Difficult: Must cross w sensitive areas to get to	etland, steep slope, heavy forest or stream. Access by foot/ATV only.
5 Notes: (biggest problem(s) you see	4 in survey reach)	3	2 Restoration Potentia Riparian reforestat Stormwater retrofit Channel modificati Culvert rehab.	1 al: ion Bank stabilization ion Outfall stabilization ion PS investigation Other

Unified Strea	am Assessment (USA)
REACH ID: (4/C) STREAM:	DATE/TIME: 130) INITIALS:
REACH START	REACH END LINE STORY MILL
	LAT:
LONG:	LONG
EURO ALL PIC 13+CP	
Average Co	onditions (check applicable)
Weather - Antecedent (24-h) Rain in past 72-h/y	(n) Weather – Current conditions
Heavy rain Steady rain Showers Clear/su	nny Heavy rain Steady rain Showers Cclear/sunny
☐Mostly cloudy ⊠Partly cloudy	Mostly cloudy Partly cloudy
Stream Classification	Stream Origin
Perennial 🖄 ntermittent 🗋 Ephemeral 🗌 Tidal	I Spring-fed Mixture of origins Glacial
Coldwater 🗌 Coolwater 🛄 Warmwater Order	Montane (non-glacial) Swamp/bog Other
Hydrology	
Flow: High Moderate Low None	
Base Flow as %Channel Width: 0-25% 150-75	5% 25-50% 75-100% Flows Measured: Yes No
Stream Gradient: ☐ High (≥25ft/mi) X Moderate	e (10-24 ft/mi) Low (<10 ft/mi) ~Slope:ft/mi
Sinuosity: 🔲 High 🛛 Moderate 🗌 Low	
Channel Morphology	System: Step/Pool (Riffle/Pool) Pool (circle)
Riffle 45 % Run 35 % E Pool 15	_% 🖾 Steps _5%
Dominant Substrate	Dominant In-Stream Habitats
Silt/clay (fine or slick)	Deposition Undercut Bank & Buy det 4
Sand (gritty)	Aquatic Plants Overhanging Vegetation
	Habitat Quality: Poor Fair Good Optimal
Land use	Local Watershed NPS Pollution
Forest 📶 % 🖾 Pasture% 🗌 Urban	% 🔲 Industrial Storm Water
Commercial% Row Crops%	Urban/Sub-Urban Storm Water Row crops
A Hay 70 % 🗌 Industrial % 🗍 Sub-Urban	% Cattle Other hay Notevidence
Riparian Buffer	25
Vegetation Type: A Forest 70% A Shrub/Saplir	ng <u>~</u> % [A Herbs/Grasses A C I un/Crops%
Stream Shading (water surface)	
IMostly shaded (≥/5% coverage)Parti	ally snaded (<25% coverage)
Motor Quality Observations	
Odors Noted:	Water Surface Appearance:
Normal/None	Slick Sheen Globs
Petroleum 🗌 Chemical 🗍 Fishy 🗍 Other	Flecks 🕅 None 🗌 Other
Turbidity/Water Clarity:	
Sediment Deposits: None 🗆 Sludge 🗌	Sawdust

USA Reach Impact Data Detail Sheet (optional)				
Reach ID/Stream:	G Date:	Initials:		

Impact I.D. ¹	Coordinates (Lat / Long) or Waypoint	Severity (1-3) ²	Restoration Opportunity (1-3) ³	Description
OT	258	l	4	single phase d-like crossing
IRS	204	1	2	thined out for bomp/barn
IBB	~210-2/1	1.5	2	Buffer only ~ 10' wide Then pasture hay
IB	211-212-213	3	3	No trees an bank evisat 22 and hay hay arass but 10 but
TB:	214 200 217	2	2	Cleared fir pasture - Darnhitin the 150' of bank.

Impact I.D. ¹	Coordinates (Lat / Long) or Waypoint	Bank Erosion Hazard	Bank Lth. (ft)	Rest. Opp. (1-3) ³	Bank information for BEHI
ER	809 LB	L M H VH EX (circle one)	400	2	Bank: Height 5.5 ft, Angle 70 Deg Protection: Roots 75 %, Root Depth ft Vegetation 75 % Fight ⁴ Material: Silt/Clay Sand / Gravel Cobble - %
ER	211- 717 LB	L M H VH EX (circle-one)	N250	3	Bank: Height <u>8,5</u> ft, Angle <u>80</u> Deg Protection: Roots <u>5</u> %, Root Depth <u>1.0</u> ft Vegetation <u>10</u> % ⁴ Material: Silt/Clay Sand / Gravel Cobble - % 20
ER	216 RB	L M H VH EX (Circle one)	C01~	2	Bank: Heightft, Angle <u>%</u> Deg Protection: Roots <u>35</u> %, Root Depth <u>3.0</u> ft Vegetation <u>35</u> % ⁴ Material: Silt/Clay Sand //GraveP Cobble - %45
ER		L M H VH EX (circle one)			Bank: Heightft, AngleDeg Protection: Roots%, Root Depthft Vegetation% ⁴Material: Silt/Clay Sand / Gravel Cobble - %
ER		L M H VH EX (circle one)			Bank: Heightft, AngleDeg Protection: Roots%, Root Depthft Vegetation% ⁴Material: Silt/Clay Sand / Gravel Cobble - %

Impacts: Outfall(OT), Bank Erosion(ER), Impacted buffer(IB), Utilities in channel(UT), Stream crossing(SC), Channel modification(CM), Trash in stream(TR), other.
 Severity: 1=minor, 2=moderate, 3=severe
 Restoration Potential: 1=minimal, 2=moderate, 3=high

⁴Bank material: circle base type, silt/clay or sand and if present circle rock type and note %.

	USA,	Cont.	
REACHID: C(-1 4/5	STREAM:	DATE/TIME:	BLP/NEJ
OTHER INFO:			

Average Conditions (check applicable)					
Flood Plain Dynamics Connection: Poor Fair Good Vegetation: Shrub/Sapling Tall grasses Turf/crops Habitat: Poor Fair Good Encroachment: Poor Fair Good					
Suspended Algae (phytoplankton) abundance: Filamentous: None Sparse Moderate Abundant Prostrate: None Sparse Moderate Abundant Floating: None Sparse Moderate Abundant					
Aquatic Plants In Stream: Submerged: Image: Sparse Submerged: Image: Sparse Image: Sparse Image:					
Aquatic Life Observed: Wildlife/Livestock In or Around Stream (evidence of): Fish Snails Crawfish Macroinvertebrates Cattle Beaver Observed: Other					
Reach Impacts: (circle impact level 1=minor, 2=moderate, 3=major, and tag with a GPS waypoint(s) (Wpt) ID) Outfalls(OT): 1 2 3 Wpt Stream Crossing(SC): 1 2 3 Wpt Bank Erosion(ER): 1 2 3 Wpt Channel Modification(CM): 1 2 3 Wpt Notes: 0 0 0 1 2 3 Wpt					
If any of these impacts are significant use back of page 1 (pg. 2) for detailed description.					
Channel Dynamics: Incised (degrading) Channelized Bed Scour Sediment Deposition Widening Aggrading Bank Failure Culvert Scour (upstream / downstream / top) Headcutting Bank scour Slope failure None (natural stabile channel)					
Channel Dimensions (facing downstream): Lt bank Ht: 5 (ft) Bankfull Depth 1.7/2.9 (ft) Wetted Width: 37/28 (ft) Riffle/Run Depth 5.5/6.5 (ft) Rt bank Ht: 4 (ft) Bankfull Width 76/400(ft) TOB Width: 95/65 (ft) Pool Depth 2/1.5 (ft)					
Channel Stability: Lt Bank: Angledegrees Rt Bank: Angledegrees LtBank Vegetation protection:% cover RtBank Vegetation protection% cover LtBank Erosion Hazard: L M H VH EX (circle one) Length Lt Bank Affected: Wot(s): Wot(s): Wot(s):					
Reach Accessibility For Restoration					
Good: Open area in public ownership. Fair: Forested or developed near Difficult: Must cross wetland, steep slope, heavy forest or Easy stream channel access by vehicle. stream. Vehicle access limited. sensitive areas to get to stream. Access by foot/ATV only.					
5 4 (3) 2 1					
Notes: (biggest problem(s) you see in survey reach) Restoration Potential: 155 Presente Profession Stormwater retrofit Outfall stabilization Channel modification PS investigation Culvert rehab. Other					
Place sketch of reach on back of page.					

Unified Str	eam Assessment (USA) RTC 530 Starts Upper A
MEACHID: US STREAM:	K- DATE/TIME: INITIALS:
REACH START	REACH END Light.
LAT: white 184	LAT:
LONG:	LONG:
Average	Conditions (check applicable)
Weather – Antecedent (24-h) Rain in past 72-h Heavy rain Steady rain Showers Clear/ Mostly cloudy Partly cloudy	1: y/ n /sunny Heavy rain Steady rain Showers Clear/sunny Mostly cloudy Partly cloudy
Stream Classification	idal Spring-fed Mixture of origins Glacial
Hydrology Flow: ☐ High	75% 25-50% 75-100% Flows Measured: Yes No rate (10-24 ft/mi) Low (<10 ft/mi) ~Slope:ft/mi
	System: Step/Pool - Riffle/Pool - Pool (circle)
$\mathbf{A} \text{Riffle} \underline{50} \% \text{Run} \underline{35} \% \textbf{A} \text{Pool} \underline{1}$	5 % \Box Steps%
Dominant SubstrateSilt/clay (fine or slick)Sand (gritty)Gravel (0.1-2.5")Boulder (>10")Bed Rock 50	Dominant In-Stream Habitats Dominant In-Stream Habitats Woody Debris
Land use DHP	Local Watershed NPS Pollution
Forest 6 % Pasture % Urban	I% Dindustrial Storm Water
Commercial% Row Crops%	Urban/Sub-Urban Storm Water 🛛 Row crops
₩Hay_25% □ Industrial% ⊠ Sub-Urb	an <u>10</u> % Cattle Other No evidence
Riparian Buffer Vegetation Type: ✓ Forest 35 % ✓ Shrub/Sa Riparian Width: <10 ft	pling 35% ☑ Herbs/Grasses 30% □ Turf/Crops% 26-50 ft □ > 50 ft
Stream Shading (water surface)	
□Mostly shaded (≥75% coverage) □Halfway shaded (≥50% coverage) □U	artially shaded (≥25% coverage) Inshated (<25% coverage)
Water Quality Observations	
Odors Noted:	Water Surface Appearance:
Normal/None Sewage Anaerobic Petroleum Chemical Fishy Other	□ Slick □ Sheen □ Globs □ Flecks □ None □ Other
Turbidity/Water Clarity:	
Clear Slightly turbid	
Clear Slightly turbid	

USA Reach Im	USA Reach Impact Data Detail Sheet (optional)			
Reach ID/Stream: MFC-1 4/5	Date:	Initials:		

Impact I.D. ¹	Coordinates (Lat / Long) or Waypoint	Severity (1-3) ²	Restoration Opportunity (1-3) ³	Description
ŦB	192-193	3	3	Sthentch with no Pipavin
FR	197-195			Kouts 41-3592 veg-1020 cob/grav-30 Ht-10" 85°ang. Silt/luam At wat 195 an odd drair cones in from
EFRO	1960-1997.	2	2	Rute 1.5' - 10% Ves-52 - 8'ht 80des. wbble-70% siltlam Dain atord of bank upt 197.
EF	198-199 LB	2	· + ·	Q.5'ht 750g Roots-2'-259 Urg-109 Cobsle-759, 514/1000
				N CONTRACTOR OF

Impact I.D. ¹	Coordinates (Lat / Long) or Waypoint	Bank Erosion Hazard	Bank Lth. (ft)	Rest. Opp. (1-3) ³	Bank information for BEHI
er RG	185	L M H VH EX (circle one)	125	1	Bank: Heightft, Angle Deg Protection: Roots%, Root Depthft Vegetation% ⁴ Material: Silt/Clay Sand Gravel Cobble - %
ER B	vble	U M H (VH) EX (circle one)	125	١	Bank: Height <u>6.5</u> ft, Angle <u>10</u> Deg Protection: Roots <u>50-</u> %, Root Depth <u>4</u> ft Vegetation <u>25</u> % ⁴ Material: Silt/Clay Sand (Gravel Cobble)-% ³⁰
ER RS	188-189	L M H VH EX (circle one)	ADD Ser Hs	1	Bank: Height 05 ft, Angle 90 Deg Protection: Roots 50%, Root Depth 25 ft Vegetation 50% ⁴ Material: Silt/Clay Sand / Gravel Cobble - %20
ER	190-1911	L M H VH EX (circle one)	~	2	Bank: Height ft, Angle Deg Protection: Roots %, Root Depth ft Vegetation % ⁴ Material: &ilt/Clay Sand / Gravel Cobble - %
ER RB	1917-193	L M H VH EX (circle one)	~	2	Bank: Height7 ft, Angle Deg Protection: Roots%, Root Depth ft Vegetation% ⁴ Material: Silt/Clay Sand / Graver Cobble - %

Impacts: Outfall(OT), Bank Erosion(ER), Impacted buffer(IB), Utilities in channel(UT), Stream crossing(SC), Channel modification(CM), Trash in stream(TR), other.
 ² Severity: 1=minor, 2=moderate, 3=severe
 ³ Restoration Potential: 1=minimal, 2=moderate, 3=high
 ⁴ Bank material: circle base type, silt/clay or sand and if present circle rock type and note %.

642

* Modified from Unified Stream Assessment: A Users Manual, (Kitchall & Schuller, 2004) Page 2 of 3

V 1.4 October 2011

		US	A, Cont.	
REACH ID:	415	STREAM: ATN FR	DATE/TIME: 5/21)14	INITIALS: GLP/NEJ
OTHER INFO:				

Average Conditions (check applicable)				
Flood Plain Dynamics				
Connection: 📋 Poor 🔲 Fair 🛛 Good Vegetation: 🗹 Forest 🖾 Shrub/Sapling 🗍 Tall grasses 🗋 Turf/crops				
Habitat: Poor Fair Good Encroachment: Poor Fair Good				
Periphyton (attached algae): Suspended Algae (phytoplankton) abundance:				
Filamentous: None Sparse Moderate Abundant None noticeable (water basically clear)				
Prostrate: None La Sparse Minoderate Abundant Moderate (water slightly green tinted)				
Aquatic Plants In Stream:				
Submerged: 🛛 None 🔲 Sparse 🔲 Moderate 🔲 Abundant				
Emergent: UNone Sparse UModerate UAbundant				
Aquatic Life Observed: Wildlife/Livestock In or Around Stream (evidence of):				
Fish Snails Crawfish Macroinvertebrates				
Percel Impactor (circle impact level 1=minor 2=moderate 2=moior and tag with a CDS wavpaint(a) (M(nt) ID)				
Coutfalle(OT): 1 2 3 What				
$\Box Stream Crossing(SC): 1 2 3 Wht \Box Trash(TR): 1 2 3 Wht$				
KlBank Erosion (ER): 1 2 3 Wot Reachances Huy 59				
$\Box Channel Modification(CM) : 1 2 3 Wpt$				
If any of these impacts are significant use back of page 1 (pg. 2) for detailed description.				
Channel Dynamics:				
Incised (degrading) Channelized Bed Scour Sediment Deposition				
Widening Aggrading Bank Failure Culvert Scour (upstream / downstream / top)				
Headcutting Bank scour Slope failure None (natural stabile channel)				
Channel Dimensions (facing downstream):				
Lt bank Ht: 6.5/5 (ft) Bankfull Depth 2.5/2.5 (ft) Wetted Width: 12/12 (ft) Riffle/Run Depth 0.5/0.5 (ft)				
Rt bank Ht: 4/4 (ft) Bankfull Width 72/60 (ft)) TOB Width 35/80 (ft) Pool Depth 2.5/20 (ft)				
Channel Stability:				
Lt Bank: Angle degrees Rt Bank: Angle degrees				
LtBank Vegetation protection: % cover RtBank Vegetation protection % cover				
LtBank Erosion Hazard: L M H VH EX (circle one) RtBank Erosion Hazard: L M H VH EX (circle one)				
Length Lt Bank Affected:				
Wpt(s): Wpt(s):				
Reach Accessibility For Restoration				
Good: Open area in public ownership. Fair: Forested or developed near Easy stream channel access by vehicle. Stream. Vehicle access limited. Stream Stream Stream Vehicle access limited.				
5 4 3 2 1				
Notes: (biggest problem(s) you see in survey reach)				
□ Riparian reforestation □ Bank stabilization				
Stormwater retrofit				
Channel modification PS investigation				
Culvert rehab.				
Place sketch of reach on back of page.				

Unified Stream	Assessment (USA)			
REACH ID: STREAM:	DATE/TIME: INITIALS:			
REACH START (At 2-1) REA	S 12 2 117 GCC / 1002 5			
LAT: MG BYLS SALL + R CG). LAT	:			
LONG:				
Average Condit	ions (check applicable)			
Weather - Antecedent (24-h) Rain in past 72-h: y/n	Weather – Current conditions			
Heavy rain Steady rain Showers Clear/sunny	Heavy rain Steady rain Showers Clear/sunny			
Mostly cloudy Partly cloudy	☐Mostly cloudy ☐Partly cloudy ⊮árm			
Stream Classification	Stream Origin			
🗌 Perennial 🔟 Intermittent 🗋 Ephemeral 🗌 Tidal	Spring-fed Mixture of origins 🗍 Glacial			
Coldwater Coolwater Warmwater Order	Montane (non-glacial) Swamp/bog Other			
Hydrology				
Flow: High Moderate Low None				
Base Flow as %Channel Width: 00-25% 050-75%	T25-50% X75-100% Flows Measured: Yes / No			
Stream Gradient: High (>25ft/mi) X Moderate (10	-24 ft/mi) ☐ Low (<10 ft/mi) ~Slope: ft/mi			
Sinuosity: High Moderate KLow				
Channel Morphology	System: Step/Pool - Riffle/Pool - Pool (circle)			
\square Piffle 40 % \square Pup 45 % \square Pool \0 %	Stens 5 %			
Dominant Substrate	Woody Debris Root Wads Leaf Packs			
Silt/clay (fine or slick)	Deposition			
Boulder (>10")	Aquatic Plants Doverhanging Vegetation			
	Habitat Quality: Poor Fair Good Optimal			
Land use	Local Watershed NPS Pollution			
Forest 00% Pasture% Urban	_% Dindustrial Storm Water			
Commercial% Row Crops%	Urban/Sub-Urban Storm Water			
☐ Hay % ☐ Industrial % ☐ Sub-Urban	% Cattle Other No evidence			
Riparian Buffer				
Vegetation Type: X Forest <u>30</u> % X Shrub/Sapling <u>o</u>	20% [] Herbs/Grasses% [] Turr/Crops%			
Stream Shading (water surface)				
Mostly shaded (≥75% coverage) □Partially	shaded (≥25% coverage)			
Halfway shaded (250% coverage 50%)	d (<25% coverage)			
Water Quality Observations	Water Surface Annearance			
Normal/None Sewage Angerobic	$\square Slick \square Sheen \square Globs$			
Petroleum Chemical C Fishy C Other	☐ Flecks None ☐ Other			
Turbidity/Water Clarity:				
Clear Slightly turbid				
Opaque 🗌 Stained	Other			
	wdust Dils D Sand D Relict shells			

USA Reach Impact Data Detail Sheet (optional)					
Reach ID/Stream: $(- \rightarrow)/s$	Date:	Initials:			

Impact I.D. ¹	Coordinates (Lat / Long) or Waypoint	Severity (1-3) ²	Restoration Opportunity (1-3) ³	Description
	1			
			1	
				4

Impact I.D. ¹	Coordinates (Lat / Long) or Waypoint	Bank Erosion Hazard	Bank Lth. (ft)	Rest. Opp. (1-3) ³	Bank information for BEHI
ER	202 (mr)720	L M H VH EX (circle one)	~125	2	Bank: Height 7 ft, Angle 85 Deg Protection: Roots 35 %, Root Depth 3.5 ft Vegetation 40 % *Material: Silt/Clay Sand //Gravel Cobble - % \$
ER	203 (2:0) RB	L M H VH EX (circle one)	700	#	Bank: Height 5 ft, Angle 8 Deg Protection: Roots 35 %, Root Depth 3,5 ft Vegetation 45 % Jun 4 Material: Silt/Clay Sand / Gravel Coppler % 50
ER	204 (mid) LB	L M H VH [·] EX (circle one)	-250	of the second	Bank: Heightft, AngleDeg Protection: Roots 45 %, Root Depthft Vegetation%
ER	205 RB	L M H VH EX (circle one)	100		Bank: Heightft, Angle _ QODeg Protection: Roots _ QO%, Root Depthft Vegetation _ QO%
ER		L M H VH EX (circle one)			Bank: Heightft, AngleDeg Protection: Roots%, Root Depthft Vegetation% ⁴ Material: Silt/Clay Sand / Gravel Cobble - %

Impacts: Outfall(OT), Bank Erosion(ER), Impacted buffer(IB), Utilities in channel(UT), Stream crossing(SC), Channel modification(CM), Trash in stream(TR), other.
 Severity: 1=minor, 2=moderate, 3=severe
 Restoration Potential: 1=minimal, 2=moderate, 3=high

⁴Bank material: circle base type, silt/clay or sand and if present circle rock type and note %.

* Modified from Unified Stream Assessment: A Users Manual, (Kitchall & Schuller, 2004) Page 2 of 3

	USA,	Cont.	
REACH ID:	STREAM:	DATE/TIME: 50211	GLP NEJ
OTHER INFO:			

Average Conditions (check a	pplicable)			
Flood Plain Dynamics				
Habitat: Poor Fair Good Encroachment: Poor Fair Good				
Periphyton (attached algae): Suspended Algae (phytoplankton) abundance:				
Prostrate: None Sparse Moderate Abundant	Moderate (water slightly green tinted)			
Floating: None Sparse Moderate Abundant	Abundant (water appears green)			
Aquatic Plants In Stream:				
Submerged: X None Sparse Moderate Abundant Emergent: None Sparse Moderate Abundant				
Floating: None Sparse Moderate Abundant				
Aquatic Life Observed: Wildlife/	Livestock In or Around Stream (evidence of):			
Eish Snails Crawfish Macroinvertebrates	Beaver Deer Other			
Reach Impacts: (circle impact level 1=minor, 2=moderate, 3=major, and	tag with a GPS waypoint(s) (Wpt) ID)			
□ Outfalls(OT): 1 2 3 Wpt □ Impacted BL	umers(IB): 1 2 3 VVpt			
Bank Erosion(ER) : 1 2 3 Wpt Utilities(UT):	: 1 2 3 Wpt			
Channel Modification(CM): 1 2 3 Wpt Other	: 1 2 3 Wpt			
Notes:				
If any of these impacts are significant use back of page 1 (pg. 2) for detaile	ed description.			
Channel Dynamics:				
Incised (degrading)	Sediment Deposition			
Headcutting Bank scour Slope failure	None (natural stabile channel) most fly stable			
Channel Dimensions (facing downstream):				
Lt bank Ht: <u>5</u> , (ft) Bankfull Depth <u>2.1/2.9</u> (ft) Wetted Width:	$\frac{1}{58}$ (ft) Riffle/Run Depth $\frac{649}{100}$ (ft)			
Rt bank Ht: <u>5</u> (ft) Bankfull Width <u>55 52 (ft)</u>) TOB Width: <u>10</u>	/ 80 (ft) Pool Depth 2/118 (ft)			
Channel Stability:	Apple			
Lt Bank: Angle degrees Rt Bank.	Vegetation protection % cover			
LtBank Erosion Hazard: L M H VH EX (circle one) RtBank E	Erosion Hazard: L M H VH EX (circle one)			
Length Lt Bank Affected: Length R	Rt Bank Affected:			
Wpt(s): Wpt(s):				
Reach Accessibility For Restoration	Enable Must gross watland steep slope beaut forest or			
Easy stream channel access by vehicle. Stream. Vehicle access limited.	ensitive areas to get to stream. Access by foot/ATV only.			
5 4 3 (2)) 1			
Notes: (biggest problem(s) you see in survey reach)				
UPT 2019 15 a hund blust inc 1	Stormwater retrofit Outfall stabilization			
or RB	Channel modification PS investigation			
	Culvert rehab.			
	ALLAR FOCHY APPEDED			
Place sketch of reach on back of page.				

8.4

Unified Strea	am Assessment (USA)				
REACH ID: STREAM:	DATE/TIME: (100) INITIALS:				
MAR - 2 9/5 Min-fort	REACH END				
LAT:	LAT:				
	LONG:				
LONG.	Lono.				
Average C	onditions (check applicable)				
Weather - Antecedent (24-h) Rain in past 72-h: y	Weather - Current conditions				
Heavy rain Steady rain Showers Clear/su	Inny Heavy rain Steady rain Showers Clear/sunny				
Mostly cloudy Partly cloudy	Mostly cloudy Partly cloudy war				
Stream Classification	Stream Origin				
Hydrology					
Flow: 🗌 High 📉 Moderate 🗌 Low 🗌 None					
Base Flow as %Channel Width: 0-25% 50-7	5% 🗋 25-50% 💢 75-100% Flows Measured: Yes / No				
Stream Gradient: ☐ High (≥25ft/mi) 🕅 Moderat	e (10-24 ft/mi) 1 Low (<10 ft/mi) ~Slope:ft/mi				
Sinuosity: High Moderate Low	N Destance Of Dest Diffe Dest Dest (similar)				
Channel Morphology	System: Step/Pool - Rime/Pool - Pool (circle)				
$\mathbb{Z}_{\text{Riffle}} \xrightarrow{30} \% \mathbb{P}_{\text{Run}} \xrightarrow{30} \% \mathbb{P}_{\text{Pool}} \xrightarrow{1}$	2_% [2] Steps%				
Dominant Substrate Dominant In-Stream Habitats					
Silt/clay (fine or slick)					
□Sand (gritty) □Boulder (>10")-50m	Sand (gritty)				
Habitat Quality: Poor Fair Good Optimal					
Land use	Local Watershed NPS Pollution				
Forest >>% Ø Pasture <u>₹>_</u> % □ Urban _	% Dindustrial Storm Water				
Commercial% 🖸 Row Crops%	Urban/Sub-Urban Storm Water 🛛 Row crops				
Hay% 🗌 Industrial% 🗍 Sub-Urbar	n% X Cattle 🗌 Other 🗌 No evidence				
Riparian Buffer	ing % THorps/Grasses 25 % Turf/Crons %				
Riparian Width: $\Box < 10 \text{ ft}$ $\boxtimes 11-25 \text{ ft}$ $\Box 26$	10^{-1} / $10^{$				
Stream Shading (water surface)	tially shaded (>25% coverage)				
Halfway shaded (≥50% coverage)	shared (<25% coverage)				
Water Quality Observations					
Odors Noted:	Odors Noted: Water Surface Appearance:				
Normal/None Sewage Anaerobic					
Petroleum Chemical Fishy Other	Flecks K None U Other				
Turbidity/Water Clarity:					
Clear Slightly turbid					
Copaque Stained	 Other				

*Modified from *Unified Stream Assessment: A Users Manual*, (Kitchall & Schuller, 2004) Page 1 of 3

V 1.4 October 2011

....

USA Reach Impact Data Detail Sheet (optional)					
Reach ID/Stream:	214	Date:	Initials:		

Impact I.D. ¹	Coordinates (Lat / Long) or Waypoint	Severity (1-3) ²	Restoration Opportunity (1-3) ³	Description
IB	17697	2		
5/m	179-:	2.5		Conslete Stand Knuking settle inf. Obvious truck use. Appears gravel IP
			-	
			×, H	
			3	

Impact I.D. ¹	Coordinates (Lat / Long) or Waypoint	Bank Erosion Ha zar d	Bank Lth. (ft)	Rest. Opp. (1-3) ³	Bank information for BEHI	
ER	177	L M H VH EX (circle one)	150	2	Bank: Height <u>S</u> ft, Angle <u>75</u> Deg Protection: Roots <u>15</u> %, Root Depth <u></u> ft Vegetation <u>75</u> % (116) ⁴ Material: Silt/Clay Sand Gravel Cobble - % <u>60</u>	
ER	178	L M (H) VH EX (circle one)	175	2	Bank: Height 4 ft, Angle 2 Deg Protection: Roots %, Root Depth 1.5 ft Vegetation % Material: (Silt/Clay)Sand Gravet Cobble % 4	
ER	180-481	L M H VH EX (circle one)	N300 See lus	3	Bank: Heightft, Angle75 Deg Protection: Roots 0 %, Root Depth 1-0 ft Vegetation 15 % ⁴ Material: Silt/Clay Sand Gravel Cobble- %50	
ER		L M H VH EX (circle one)			Bank: Heightft, AngleDeg Protection: Roots%, Root Depthft Vegetation% ⁴ Material: Silt/Clay Sand / Gravel Cobble - %	
ER		L M H VH EX (circle one)		-	Bank: Heightft, AngleDeg Protection: Roots%, Root Depthft Vegetation% ⁴Material: Silt/Clay Sand / Gravel Cobble - %	

Impacts: Outfall(OT), Bank Erosion(ER), Impacted buffer(IB), Utilities in channel(UT), Stream crossing(SC), Channel modification(CM), Trash in stream(TR), other.
 ² Severity: 1=minor, 2=moderate, 3=severe
 ³ Restoration Potential: 1=minimal, 2=moderate, 3=high
 ⁴ Ports motorial: contained base times and if an end to be a stream of the severe stream of

⁴Bank material: circle base type, silt/clay or sand and if present circle rock type and note %.

USA, Cont.							
REACHID: M-V-2 (1/s)	Mth- Furk	DATE/TIME: 5 2111/9	INITIALS:				
OTHER INFO:			1				

Average Conditions (check applicable)								
Flood Plain Dynamics Connection: Poor Fair Good Vegetation: Shrub/Sapling Tall grasses Turf/crops Encroachment: Poor Fair Good								
Periphyton (attached algae): Filamentous: None Sparse Moderate Abundant Prostrate: None Sparse Moderate Abundant Moderate Moderate Abundant Floating: None Sparse Moderate Abundant Abundant Moderate Abundant								
Aquatic Plants In Stream: Submerged: None Sparse Moderate Abundant Emergent: None Sparse Moderate Abundant Floating: X None Sparse Moderate Abundant								
Aguatic Life Observed: Wildlife/Livestock In or Around Stream (evidence of): Fish Snails Macroinvertebrates								
Reach Impacts: (circle impact level 1=minor, 2=moderate, 3=major, and tag with a GPS waypoint(s) (Wpt) ID) Outfalls(OT): 1 2 3 Wpt Stream Crossing(SC): 1 2 3 Wpt Impacted Buffers(IB): 1 2 3 Wpt Bank Erosion(ER): 1 2 3 Wpt Impacted Buffers(IB): 1 2 3 Wpt Channel Modification(CM): 1 2 3 Wpt Impacted Buffers(ID): 1 2 3 Wpt Notes: 1 2 3 Wpt: 1 2 3 Wpt								
If any of these impacts are significant use back of page 1 (pg. 2) for detailed description.								
Channel Dynamics: Incised (degrading) Channelized Bed Scour Sediment Deposition Midening Aggrading Mank Failure Culvert Scour (upstream / downstream / top) Headcutting Bank scour Slope failure None (natural stabile channel)								
Channel Dimensions (facing downstream): $\mathcal{D} \mid \mathcal{J} \mathcal{J}$ Lt bank Ht: (ft) Bankfull Depth (ft) Wetted Width: (ft) Riffle/Run Depth (ft) Rt bank Ht: (ft) Bankfull Width (ft) TOB Width: (ft) Pool Depth (ft)								
Channel Stability: 10-75 Lt Bank: Angle degrees Rt Bank: Angle degrees LtBank Vegetation protection:% cover Rt Bank Vegetation protection% cover LtBank Erosion Hazard: L M H VH EX (circle one) Length Lt Bank Affected: Wpt(s): Wpt(s): Wpt(s):								
Reach Accessibility For Restoration								
Good: Open area in public ownership. Easy stream channel access by vehicleFair: Forested or developed near stream. Vehicle access limited.Difficult: Must cross wetland, steep slope, heavy forest or sensitive areas to get to stream. Access by foot/ATV only.								
5 (4) 3 2 1								
Restoration Potential: Riparian reforestation ABank stabilization Stormwater retrofit Outfall stabilization Channel modification PS investigation Other Other								
Place sketch of reach on báck of page.								
Unified Stream Assessment (USA)								
---	--	--	--	--	--	--	--	--
REACH ID: STREAM:	DATE/TIME: INITIALS:							
DEACH STADT	PEACHEND CONTRACTOR							
LAT: AL	$ \mathbf{AT} = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2}$							
IONG: I downstream to near y								
Long. (Corte of FRig Baser)	LONG.							
Glarier (as 1115 "	aditions (abask applicable)							
Weather – Antecedent (24-h) Rain in past 72-h; v	/ n Weather - Current conditions							
Heavy rain Steady rain Showers Clear/sur	THeavy rain Steady rain Showers Clear/sunny							
Mostly cloudy Partly cloudy								
Stream Classification Stream Origin								
Perennial 🔲 Intermittent 🗌 Ephemeral 🗍 Tidal	🔲 Spring-fed 🕅 Mixture of origins 🔲 Glacial							
Coldwater Coolwater Warmwater Order	Montane (non-glacial) 🗌 Swamp/bog 🗍 Other							
Hydrology								
Flow: High Moderate Low None	43 44							
Base Flow as %Channel Width: 0-25% 150-75	% 25-50% 75-100% Flows Measured Ves (No)							
Stream Gradient: ☐ High (≥25ft/mi) ☐ Moderate	(10-24 ft/mi) Low (<10 ft/mi) ~Slope: ft/mi							
Sinuosity: High Moderate Low								
Channel Morphology	System: Step/Pool - Riffle/Pool - Pool (circle)							
Ø Riffle <u>50</u> % Ø Run <u>55</u> % Ø Pool <u>\</u>	2_% Steps%							
Dominant Substrate	Dominant In-Stream Habitats							
Silt/clay (fine or slick)	Woody Debris Root Wads Leaf Packs							
□Sand (gritty) □Boulder (>10")	Deposition Undercut Bank							
Gravel (0.1-2.5") Bed Rock	Habitat Quality: Poor AFair AGood Continual							
Land use	Local Watershed NPS Pollution							
N Forest 75 % Pasture % [] Urban	% Undustrial Storm Water							
Riparian Buffer								
Vegetation Type: X Forest 1> % Shrub/Sapling	g% X Herbs/Grasses > % Turf/Crops%							
Riparian Width: 1	50ft ∐>50ft (B-750 LB-varia) /P							
Stream Shading (water surface)	highend							
☐Mostly shaded (≥75% coverage) ☐Partia	lly shaded (≥25% coverage)							
Mater Quality Observations	ared (<25% coverage)							
Odors Noted:	Water Surface Annearance							
Normal/None Sewage Anaerobic	Slick Scheen Globs							
Petroleum Chemical Fishy Other	Flecks 🛛 None 🗌 Other							
Turbidity/Water Clarity:								
U Slightly turbid								
Sediment Deposits: None Sludge S	Sawdust 🔲 Oils 🛄 Sand 🔄 Relict shells							
Trail along bunk at wet 160w/41 wet 161 (unappro alcesi (bude) Modified from Unified Stream Assessment: A Users Manual Page 1 of 3	い							
75	74(3)-10 $74(3)-10$							
TIZES BF	75% 0.6 - U(13 (watth in)							

May 22.23 USA Reach Impact Data Detail Sheet (optional) Initials: Date: Reach ID/Stream: .3 mi 4/4/12 Jonps -Description Restoration Severity Impact Coordinates Opportunity $(1-3)^2$ I.D.¹ (Lat / Long) or (1-3)³ Waypoint Ande 850 Ruit deptin-2' H+-4-5' 300 H-1/14 Routs - 40% \$5 veg - 20% Chble 50% 800 anole 31 Rt. depth Cobble 802 4 H Rusts 200 1610 1000 Veg. Produce no trees to adop build Provis to stream in 2.3 spils 225 Ner M most 14. Jas 00 Road Evedin below MUCH of 16 Bank information for BEHI Bank Rest. Coordinates Bank Impact Opp. (1-3)³ Erosion Lth. (ft) I.D.1 (Lat / Long) or Hazard Waypoint Bank: Height 4 Deg ft, Angle %? L_M H 65H ER Protection: Roots 10 %, Root Depth 4 ft VH EX 200 23 Vegetation 15 % 424 (circle one) 2.5 Material: Silt/Clay Sand / Gravel Cobble - %70 ft, Angle 85 Dea Bank: Height 7-10 ER MH Protection: Roots 10 %, Root Depth 3 ft VH ()EX 00 Vegetation 10 % (circle one) ⁴Material: Silt/Clay Sand / Gravel Cobble / % 20 Bank: Height () ft, Angle 90 Deg LMH ER Protection: Roots 5 Vegetation <u>45</u>% %, Root Depth ft VH (EX Dr b (circle one) N ⁴Material: Silt/Clay_Sand / Gravel Cobble) - % Deg Bank: Height T ft, Angle 30 L M(H) ER Protection: Roots 50 %, Root Depth 50 ft 8 VH EX Vegetation _ 20 % (circle one) ⁴Material: Silt/Clay Sand / Gravel Cobble) % Bank: Height 4 ft, Angle 85 Deg L M H ER Protection: Roots 6 5 %, Root Depth 4 ft 3 RP 75 Vegetation 10 % (circle one) ⁴Material: Silt/Clay Sand / Gravel Cobble % 65

Impacts: Outfall(OT), Bank Erosion(ER), Impacted buffer(IB), Utilities in channel(UT), Stream crossing(SC), Channel 7.1.1-1350 bank modification(CM), Trash in stream(TR), other.

² Severity: 1=minor, 2=moderate, 3=severe

³ Restoration Potential: 1=minimal, 2=moderate, 3=high

⁴Bank material: circle base type, silt/clay or sand and if present circle rock type and note %.

Modified from Unified Stream Assessment: A Users Manual, (Kitchall & Schuller, 2004) Page 2 of 3

V 1.4 October 2011

1= 19.7%

REACH ID: \ STREAM: DA	ATE/TIME. INITIALS
Zines-1 tz James (V. 4	4/4/12 DET
OTHER INFO:	
	0-261-3
Average Conditions (check ap)	
Connection: Poor Fair Good Vegetation: G Forest Habitat: Poor Fair Good Encroachment: Poor	□ Shrub/Sapling 凶 Tall grasses □ Turf/crops or □ Fair 囟 Good
Periphyton (attached algae): Susserved Filamentous: None Sparse Moderate Abundant Prostrate: None Sparse Moderate Abundant Filamentous: None Sparse Moderate Abundant Prostrate: None Sparse Moderate Abundant Floating: None Sparse Moderate Abundant	spended Algae (phytoplankton) abundance: None noticeable (water basically clear) Moderate (water slightly green tinted) Abundant (water appears green)
Aquatic Plants In Stream: Submerged: None Sparse Moderate Abundant Emergent: None Sparse Moderate Abundant Floating: None Sparse Moderate Abundant	
Aquatic Life Observed: Wildlife/Li	ivestock In or Around Stream (evidence of):
Reach Impacts: (circle impact level 1=minor, 2=moderate, 3=major, and ta Outfalls(OT): 1 2 3 Wpt Impacted Buff Stream Crossing(SC): 1 2 3 Wpt Impacted Buff Stream Crossing(SC): 1 2 3 Wpt Impacted Buff Bank Erosion(ER): 1 2 3 Wpt Utilities(UT): Channel Modification(CM): 1 2 3 Wpt Other Notes: Notes: Notes Notes Notes Notes Notes	tag with a GPS waypoint(s) (Wpt) ID) ffers(IB): 1 2 3 Wpt 1 2 3 Wpt 1 2 3 Wpt : 1 2 3 Wpt
If any of these impacts are significant use back of page 1 (pg. 2) for detailed Channel Dynamics:	d description. Sediment Deposition
Widening A Constant D Aggrading Aggrading Bank Failure C Headcutting Aggrading Aggrading Aggrading Stope failure N	Culvert Scour (upstream / downstream / top) None (natural stabile channel)
Channel Dimensions (facing downstream): >>> Lt bank Ht:	55 (ft) Riffle/Run Depth 0.4 (ft)
Channel Stability: Lt Bank: Angle degrees Rt Bank: Rt Bank:	Angle degrees
LtBank Vegetation protection:% cover RtBank Ve LtBank Erosion Hazard: L M H VH EX (circle one) RtBank Er	regetation protection% cover prosion Hazard: L M H VH EX (circle one) t Bank Affected:
Wpt(s):Wpt(s):	
Reach Accessibility For Restoration	
Good: Open area in public ownership. Fair: Forested or developed near stream. Diff Easy stream channel access by vehicle. stream. Vehicle access limited. Sen	fficult: Must cross wetland, steep slope, heavy forest or
5 4 3 2	1
Notes: (biggest problem(s) you see in survey reach)	Pastoration Potential: Riparian reforestation Bank stabilization Stormwater retrofit Outfall stabilization Channel modification PS investigation Culvert rehab. Other
Place sketch of reach on back of page.	1

Unified Str	n Assessment (USA)		
REACH ID: FR-1 STREAM: Fra 1		₩P	
REACH START	EACHEND Bridge over Frig	on Binville	
LAT:	AT:		
LONG:	ONG:		
WA. 1680	le		
Average	ditions (check applicable)	and the second state	
Weather – Antecedent (24-h) Rain in past 72-h Heavy rain Steady rain Showers Clear/ Mostly cloudy Partly cloudy	Meather – Current conditions IV Heavy rain IV Mostly cloudy Partly cloudy	vers Clear/sunny	
Stream Classification	Stream Origin	☐ Glacial b/bog ☐ Other	
Hydrology Flow: High Moderate Low None Base Flow as %Channel Width: 0-25% 50- Stream Gradient: High (>25ft/mi) Moderate	o □25-50% □75-100% Flows N 10-24 ff/mi) □ Low (<10 ff/mi)	teasured: Yes (No)	
Sinuosity: High X Moderate Low			
Channel Morphology	System: Step/Pool	Riffle/Pool Pool (circle)	
$\mathbf{X} \operatorname{Riffle} \underline{45} \% \operatorname{X} \operatorname{Run} \underline{35} \% \operatorname{X} \operatorname{Pool} \overline{6}$	_% 🗌 Steps%		
Dominant SubstrateSilt/clay (fine or slick)Sand (gritty)Gravel (0.1-2.5")Bed Rock	Dominant In-Stream Habitats Woody Debris Root Wads Deposition Undercut Bar Aquatic Plants Overhanging Habitat Quality: Poor	Leaf Packs hk Vegetation Good D Optimal	
Land use QU GHU 40	Local Watershed NPS Pollútio	n	
Forest % Pasture % Urban	%		
Commercial % Row Crops %	Urban/Sub-Urban Storm Water DRow crops		
Hay% [] Industrial% [] Sub-Urba	% Cattle Other	_ No evidence	
Riparian Buffer Vegetation Type: ✓ Forest Point ✓ Shrub/Sag Riparian Width: ✓ 10 ft	$\frac{6}{10}$ % Herbs/Grasses $\frac{20}{10}$ % \Box T	urf/Crops% >50' R.B - les 5	
Stream Shading (water surface)			
☐Mostly shaded (≥75% coverage)	y shaded (≥25% coverage) red (<25% coverage)		
Water Quality Observations			
Odors Noted: Normal/None Sewage Anaerobic Petroleum Chemical Fishy Other	Water Surface Appearanc Image: Stress stre	e:	
Turbidity/Water Clarity:	- x		
Clear Slightly turbid	Turbid Other		
Sediment Deposits: None Sludge	awdust 🗍 Oils 🗌 Sand 🛛 🕅 R	elict shells	

* Modified from Unified Stream Assessment: A Users Manual, (Kitchall & Schuller, 2004) Page 1 of 3 ろちゅん ひもう 4.5 かんみ マネットメル タン 4.5 bkr み

V 1.4 October 2011

USA	Reach	mpa	act Data	Detail Sheet	t (opti	onal)
/		1	Date:	111		Initials:

Reach ID/Stream: R

cher + 1.

			-
5mi	Date:	4/4/12	

Impact I.D. ¹	Coordinates (Lat / Long) or Waypoint	Severity (1-3) ²	Restoration Opportunity (1-3) ³	Description
3B	169	27	2	State Sustaine - and these State Sustaines to edge.
50	11172	2m	100 25	the Pasture / astrons

1 th	Impact I.D. ¹	Coordinates (Lat / Long) or Waypoint	Bank Erosion Hazard	Bank Lth. (ft)	Rest. Opp. (1-3) ³	Bank information for BEHI
0	ER RB	162	L M H VH EX (circle one)	150	1	Bank: Heightft, Angle <u>80</u> Deg Protection: Roots <u>60</u> %, Root Depth <u>3</u> ft Vegetation <u>80</u> % ⁴ Material: Silt/Clay Sand / Gravel Cobble <u>% 70</u>
	ER	169	L M H VH EX (circle one)	250	3	Bank: Heightft, AngleDeg Protection: Roots%, Root Depthft Vegetation% ⁴ Material: Silt/Clay Sand / Gravel Cobble % @
- I	ER	(70	L_M_H VH_EX (circle one)	100 -	75	Bank: Height
	ER	171	L M (A) VH EX (circle one)	275	1	Bank: Heightft, Angle5 Deg Protection: Roots <u>70</u> %, Root Depth <u>5,5</u> ft Vegetation <u>10</u> % ⁴ Material: Silt/Clay Sand / Gravel Cobble %55
	ER	1724 ensis	L M H VH EX (circle one)	(000)		Bank: Heightft, AngleDeg Protection: Roots%, Root Depthft Vegetation% ⁴ Material: Silt/Clay Sand / Gravel Cobble - %

 Impacts: Outfall(OT), Bank Erosion(ER), Impacted buffer(IB), Utilities in channel(UT), Stream crossing(SC), Channel modification(CM), Trash in stream(TR), other.
 ² Severity: 1=minor, 2=moderate, 3=severe
 ³ Restoration Potential: 1=minimal, 2=moderate, 3=high
 ⁴ Restoration Potential: 1=minimal, 2=moderate, 3=high 1325 PK

⁴Bank material: circle base type, silt/clay or sand and if present circle rock type and note %.

V 1.4 October 2011

= 10.7%

	054	4, COI	<u>It.</u>			
EACH ID: STREAM	E Ray		DATE/TIME:		INITIALS	1LP
FD-1 F10	g Dayon		717112			
THER INFO:						
	Average Condition	s (check	applicable)	The sold	V. III.Care	010
lood Plain Dynamics		 \	_			- - "
connection: 🗍 Poor 📋 Fair 🛛 Goo labitat: 🗌 Poor 🗍 Fair 🗍 Goo	d Vegetation: d Encroachme	M Fores ent: C F	st ∐ Shrub/Sap 'oor	Good	Tall grasses	
eriphyton (attached algae): ilamentous: ☐ None ∑ Sparse ☐ N rostrate: ☐ None ☐ Sparse ☎ loating: ☑ None ☐ Sparse ☐ N	Noderate Abund Noderate Abund Noderate Abund	lant lant bant	Suspended Alg None noticea Moderate (w Abundant (w	ae (phyte ble (wate vater sligh ater appe	o plankton) a r basically cl ntly green tin ears green)	a bundance; ear) ted)
aquatic Plants In Stream: ubmerged: ⊠ None □ Sparse □ mergent: □ None ☆ Sparse □ loating: ♡ None □ Sparse □	Moderate Abur Moderate Abur Moderate Abur	ndant ndant ndant				
quatic Life Observed: AFish □Snails	invertebrates	Wildlif Catt	e/Livestock In c le Beaver	Deer	d Stream (ey	idence of):
Reach Impacts: (circle impact level 1=mi Outfalls(OT): 1 2 3 Wpt Stream Crossing(SC): 1 2 3 Wpt Bank Erosion(ER): 1 2 3 Wpt Channel Modification(CM): 1 2 3 Wpt Iotes: Iotes: Iotes 1 2 3 Wpt	nor, 2=moderate, 3=	major, an mpacted Trash(TR Jtilities(U Dther	d tag with a GPS Buffers(IB) 1): 1 2 3 Wpt_ T): 1 2 3 Wpt_ :	ot	t	
i any of these impacts are significant use b channel Dynamics: Incised (degrading) Widening with a c Headcutting	back of page 1 (pg. 2 Bed Scour Bank Failu Milyr D Slope failu) for deta r [ure [ure [] Sediment Dep Culvert Scour	osition (upstrean stabile ch	n / downstrea nannel)	am / top)
t bank Ht: 5,5 (ft) Bankfull Depth	m): 4,5 (ft) Wett 108 (ft)) TOE	ted Width 3 Width:_	(ft) (ft) (ft)	Riffle/R Pool De	un Depth) <u>-{</u> (ft) 5(ft)
Channel Stability: t Bank: Angle degrees tBank Vegetation protection:9 tBank Erosion Hazard: L M H VH ength Lt Bank Affected: Vpt(s): Vpt(s):	6 cover EX (circle one)	Rt Bar RtBan RtBan Length Wpt(s)	k: Angle Vegetation prot Erosion Hazard Rt Bank Affecte	de ection l: L M ed:	grees % c H VH E	over X (circle one)
leach Accessibility For Restoration		ath a		10		Maria and
Good: Open area in public ownership. Fair: asy stream channel access by vehicle. stream	Forested or developed m. Vehicle access limit	d near ited.	Difficult: Must cro sensitive areas to	get to stre	d, steep slope am. Access b	, heavy forest or y foot/ATV only.
o 4 lotes: (biggest problem(s) you see in survey re		Restoration Po	tential: estation etrofit ification	□Bank stab □Outfall sta □PS investi	ilization bilization gation	
			Culvert rehat).	Other	

Unified Stre	am Assessment (USA)
REACHID: F-B-2 STREAM: Ash Rd	10282 ASTA INITIALS:
REACH START	REACHEND Upt 185
LAT:	LAT:
LONG:	LONG:
Average C	Conditions (check applicable)
Weather – Antecedent (24-h) Rain in past 72-h: Heavy rain Steady rain Showers Clear/si Mostly cloudy Partly cloudy	y / n UNDERSTRICT OF CONTINUES UNDERSTRICT OF CONTINUES UNDERSTRICT OF CONTINUES UNDERSTRICT OF CONTINUES OF
Stream Classification Perennial I Intermittent Ephemeral I Tida Coldwater Coolwater Warmwater Order	al Spring-fed Mixture of origins Glacial Montane (non-glacial) Swamp/bog Other
Hydrology Flow: High Moderate Low None Base Flow as %Channel Width: 0-25% [50-7	75% 25-50% 75-100% Flows Measured: Yes / No
	System: Step/Pool - Riffle/Pool - Pool (circle)
$\square Riffle \underline{40} \% \square Run \underline{30} \% \square Pool \underline{3}$	<u>5</u> % 🖾 Steps <u>5</u> %
Dominant SubstrateSilt/clay (fine or slick)Sand (gritty)Gravel (0.1-2.5")	Dominant In-Stream Habitats Woody Debris Root Wads Leaf Packs Deposition Undercut Bank Aquatic Plants Overhanging Vegetation Habitat Quality: Poor Fair
Land use ↓Forest <u>)</u> % [™] A Pasture <u>5</u> % □ Urban _ □ Commercial <u>%</u> Row Crops <u>5</u> % □ Hay <u>%</u> Industrial <u>%</u> Sub-Urba	% □ Industrial Storm Water
Riparian Buffer Vegetation Type: ✓ Forest ✓ M Shrub/Sapl Riparian Width: ✓ <10 ft	ling% \square Herbs/Grasses 20% \square Turf/Crops% 6-50 ft $\square > 50$ ft $\square > 6\%$ R B
Stream Shading (water surface) ☐ Mostly shaded (≥75% coverage) ☐ Halfway shaded (≥50% coverage)	tially shaded (≥25% coverage) shared (<25% coverage)
Water Quality Observations Odors Noted: Normal/None Sewage Petroleum Chemical Fishy Other	Water Surface Appearance: Slick Sheen Globs Flecks None Other
Turbidity/Water Clarity: Clear Slightly turbid Opaque Stained	Turbid Other
Sediment Deposits: 🗍 None 🔲 Sludge 🛛	Sawdust Oils Sand Relict shells

Reach II	D/Stream:	(3.3m;) Date: 4		Initials:
Impact I.D. ¹	Coordinates (Lat / Long) or Waypoint	Severity (1-3) ²	Restoration Opportunity (1-3) ³	Description
OT	175		nla	Farm field duain??
SC	178	L.	nla	Small Bridge in Pasture
L	19/18-1	1.5		2 Bridson (1RR)
KK/	185	45	Ň	home metric & Riphone intervent
20	4.58		1	16 Roud arcest

Impact I.D. ¹	Coordinates (Lat / Long) or Waypoint	Bank Erosion Hazard	Bank Lth. (ft)	Rest. Opp. (1-3) ³	Bank information for BEHI
er RB	173- F781174	L M H VH EX (circle one)	1200	1,5	Bank: Heightft, Angle Deg Protection: Roots%, Root Depthft Vegetation% ⁴ Material: Silt/Clay, Sand / Gravel Cobble- %
ER LB	175-174	L M H VH EX (circle one)	300	2	Bank: Heightft, AngleDeg Protection: Roots%, Root Depthft Vegetation% ⁴Material: Silt/Clay Sand / Gravel Cobble - %
LB	176-127	L M H) VH EX (circle one)	375		Bank: Heightft, AngleDeg Protection: Roots%, Root Depthft Vegetation% ⁴ Material: Silt/Clay Sand / Gravel Cobble - %
RB	(-75°)	L M H VH EX (circle one)	1453		Bank: Height <u>5</u> ft, Angle <u>5</u> Deg Protection: Roots <u>6</u> %, Root Depth <u>5,5</u> ft Vegetation <u>0</u> % ⁴ Material: Silt/Clay) Sand / Gravel Cobble <u>6</u>
ER	ANS-	L M H VH EX (circle one)	2600	X	Bank: Heightft, AngleDeg Protection: Roots%, Root Depthft Vegetation% ⁴ Material: Silt/Clay Sand / Gravel Cobble - %

¹ Impacts: Outfall(OT), Bank Erosion(ER), Impacted buffer(IB), Utilities in channel(UT), Stream crossing(SC), Channel modification(CM), Trash in stream(TR), other.
 ² Severity: 1=minor, 2=moderate, 3=severe
 ³ Restoration Potential: 1=minimal, 2=moderate, 3=high
 ⁴ Bank material: circle base type, silt/clay or sand and if present circle rock type and note %.

7424

2.

14 V 1.4 October 2011

Modified from Unified Stream Assessment: A Users Manual, (Kitchall & Schuller, 2004) Page 2 of 3

	USA, U	ONL.				
STREAM:	Bayer	DATE/TIME: 1512	INITIALS:			
Average	Conditions (ch	eck applicable)	and the second			
Average	Conditions (ch	eck applicable/				
r 🖾 Good V r 💭 Good E	Vegetation: 🔄 F Encroachment:	orest 🗌 Shrub/Sapling] Poor 🔲 Fair 🛛 G	Tall grasses 🔲 Turf/crops			
arse 🗌 Moderate barse 🖾 Moderate barse 🗌 Moderate	☐ Abundant ☐ Abundant ☐ Abundant	Suspended Algae (pl Mone noticeable (w Moderate (water s Abundant (water a	hytoplankton) abundance: /ater basically clear) slightly green tinted) ppears green)			
oarse ☐ Moderate oarse ☐ Moderate oarse ☐ Moderate	Abundant					
	ates Will	dlife/Livestock In or Aro	und Stream (evidence of): Dother Man 105/90036			
t level 1=minor, 2=mo 3 Wpt Wpt 1 2 3 Wpt	oderate, 3=major [] Impac [] Trash [] Utilitie [] Other	, and tag with a GPS way ted Buffers(IB): 1 2 3 V (TR): 1 2 3 Wpt s(UT): 1 2 3 Wpt 1 2	point(s) (Wpt) ID) Wpt 2 3 Wpt			
ificant use back of pa Channelized Aggrading Bank scour	age 1 (pg. 2) for (] Bed Scour] Bank Failure] Slope failure	detailed description Sediment Deposition Culvert Scour (upstr None (natural stabil	ı eam / downstream / top) e channel)			
downstream): kfull Depth <u>4.5</u> kfull Width <u>130</u>	_(ft) Wetted W _(ft)) TOB Wid	/idth:(ft) Riffle th:(ft) Pool	e/Run Depth(ft) Depth(ft)			
Channel Stability:						
oration	LUS -	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				
hicle. Fair: Forested	l or developed nea le access limited.	Difficult: Must cross we sensitive areas to get to	etland, steep slope, heavy forest or stream, Access by foot/ATV only.			
4 3.5) the in survey reach	3	Restoration Potentia	I I I I I I I I I I I I I I			
	STREAM: Average Average Average arse Good A parse Moderate barse Moderate barse Moderate barse Moderate barse Moderate barse Moderate arse Moderate barse Moderate arse Moderate arse Moderate Adverate arse Moderate Adverate arse Moderate Moderate arse Moderate Adverate Adverate Adverate Adverate Adverate Moderate Adverate Adverate Moderate Adverate Moderate Adverate Moderate Moderate Adverate Moder	STREAM: Average Conditions (ch r Good Vegetation: F r Good Encroachment: F parse Moderate Abundant parse Moderate Trash Wit Utilitie Trash Wpt Utilitie Utilitie 1 2 3 Wpt Other downstream): (ft) Wetted W kfull Depth (ft) Wetted W grees	STREAM: DATE/TIME: Average Conditions (check applicable) r Good Vegetation: Forest Good Vegetation: Parse Moderate Moderate Abundant Darse Moderate Moderate Abundant Parse Moderate Moderate Superation Millipacted Buffers(IB): 1 2 3 Wpt 1 2 3 Wpt Superation			

Unified Stream Assessment (USA)						
REACHID: STREAM:	DATETIME: INITIALS:					
REACH START UP1 185 REA	CHEND HUT282@RR Frank					
LAT: (Chipe la Paster,) LAT						
LONG:	IG:					
Average Condit	ions (check applicable)					
Weather - Antecedent (24-h) Rain in past 72-h: y / n	Weather – Current conditions					
Heavy rain Steady rain Showers Clear/sunny	Heavy rain Steady rain Showers Clear/sunny					
Mostly cloudy Partly cloudy	Mostly cloudy Partly cloudy					
Stream Classification	Stream Origin					
Perennial Intermittent Ephemeral Tidal Spring-fed Mixture of origins Glacial Glacial						
Coldwater Coolwater Warmwater Order Montane (non-glacial) Swamp/bog Other						
Hydrology						
Hydrology						
	125-50% 175-100% Flows Measured: Yes No					
Stream Gradient: High (>25ft/mi) Moderate (10.	-24 ff/mi) \[low (<10 ff/mi) ~Slope' ff/mi					
Sinuosity: High Moderate Low						
Channel Morphology	System: Step/Pool _ Riffle/Pool - Pool (circle)					
$\boxtimes \operatorname{Riffle} 40\% \boxtimes \operatorname{Run} 25\% \boxtimes \operatorname{Pool} 35\% \square \operatorname{Steps}\%$						
X RITTLE 100 % 1 X POOL 3 2 % 1 Steps% Dominant In Stream Habitate 1 Deminant In Stream Habitate						
Dominant Substrate	Dominant In-Stream Habitats					
Silt/clay (fine or slick)	Deposition Aundercut Bank					
Sand (gritty) Boulder (>10") Deposition Undercut Bank						
Gravel (0.1-2.5")	Habitat Quality: Poor Fair Good Doptimal					
Land use	Local Watershed NPS Polfution					
Forest 60 % A Pasture 40 % Urban	%					
Commercial % Crops %	Urban/Sub-Urban Storm Water					
Hay% [] Industrial% [] Sub-Urban% [] Cattle [] Other [] No evidence						
Riparian Buffer						
Vegetation Type: K Forest						
Riparian Width: <a>	<u>P</u> Soft ∠ B					
Stream Shading (water surface)						
Mostly shaded (≥75% coverage)	shaded (≥25% coverage)					
Halfway shaded (≥50% coverage)	d (<25% coverage)					
Water Quality Observations						
Odors Noted:	Water Surface Appearance:					
🗖 Normal/None 🔲 Sewaġe 🗌 Anaerobic	🗋 Slick 🔄 Sheen 🗋 Globs					
Petroleum 🗌 Chemical 🗋 Fishy 🔲 Other	Flecks 🕅 None 🗌 Other					
Turbidity/Water Clarity:						
Sediment Deposits: None 🗌 Sludge 🗌 Saw	dust 🔲 Oils 🗌 Sand 🔄 Relict shells					

		USA Reach	Impact Data D	etail Sheet (optional)
Reach I	D/Stream: (-B-2.5	(3.)	Date: 4	512 Initials:
Impact I.D. ¹	Coordinates (Lat / Long) or Waypoint	Severity (1-3) ²	Restoration Opportunity (1-3) ³	Description
SCAR	193	1.5	1.5	Access from RB
tB	185-40	25	3	alory Big Pasture some areas No tices, ensture 3900 mod here
56	188		Y	RB- Road Accoss
ER	PB189			hoald over areas over ER

Impact I.D. ¹	Coordinates (Lat / Long) or Waypoint	Bank Erosion Hazard	Bank Lth. (ft)	Rest. Opp. (1-3) ³	Bank information for BEHI
ER R-B	185- 193	L M H VH EX (circle one)	292	2	Bank: Height <u>4</u> ft, Angle <u>4290</u> Deg Protection: Roots <u>Var</u> %, Root Depth <u>Var</u> ft Vegetation <u>50</u> % <u>400</u> ⁴ Material: Silt/Clay Sand / Gravel Cobble - % <u>490</u>
er PB	186-187	L M H VH EX (circle one)	ADÓ	2	Bank: Heightft, Angle Deg Protection: Roots%, Root Depthft Vegetation% ⁴ Material: Silt/Clay Sand / Gravel ©obble % 30
ER	190-191	L M (H) VH EX (circle one)	575 Vair	while	Bank: Heightft, AngleDeg Protection: Roots%, Root Depthft Vegetation% ⁴Material: Silt/Clay Sand / Gravel Cobble - %
ER		L M H VH EX (circle one)			Bank: Heightft, AngleDeg Protection: Roots%, Root Depthft Vegetation% ⁴Material: Silt/Clay Sand / Gravel Cobble - %
ER		L M H VH EX (circle one)			Bank: Heightft, AngleDeg Protection: Roots%, Root Depthft Vegetation% ⁴Material: Silt/Clay Sand / Gravel Cobble - %

¹ Impacts: Outfall(OT), Bank Erosion(ER), Impacted buffer(IB), Utilities in channel(UT), Stream crossing(SC), Channel modification(CM), Trash in stream(TR), other.
² Severity: 1=minor, 2=moderate, 3=severe
³ Restoration Potential: 1=minimal, 2=moderate, 3=high 4375 16300 - 26,7%

⁴Bank material: circle base type, silt/clay or sand and if present circle rock type and note %.

V 1.4 October 2011

	USA,	Cont.		
REACH ID:	STREAM:	DATE/TIME:	INITIALS:	
OTHER INFO	Froy Bayon	F15/12	1,00	

Average Conditions (check applicable)					
Flood Plain Dynamics Connection: Poor Fair Good Vegetation: Shrub/Sapling Yall grasses Turf/crops Encroachment: Poor Fair Good					
Periphyton (attached algae): Suspended Algae (phytoplankton) abundance: Filamentous: None Sparse Moderate Abundant Prostrate: None Sparse Moderate Abundant Floating: None Sparse Moderate Abundant					
Aquatic Plants In Stream: Submerged: None Sparse Emergent: None Sparse Floating: None Sparse					
Aquatic Life Observed: Wildlife/Livestock In or Around Stream (evidence of): Fish Snails Crawfish Macroinvertebrates Cattle Beach Beaver Deer Other Junt 145					
(circle impact level 1=minor, 2=moderate, 3=major, and tag with a GPS waypoint(s) (Wpt) ID) Outfalls(OT): 1 2 3 Wpt Outfalls(OT): 1 2 3 Wpt Ostream Crossing(SC): 1 2 3 Wpt Bank Erosion(ER): 1 2 3 Wpt Channel Modification(CM): 1 2 3 Wpt Notes: Notes: 1 2 3 Wpt					
If any of these impacts are significant use back of page 1 (pg. 2) for detailed description.					
Channel Dynamics: Incised (degrading) Channelized Bed Scour Sediment Deposition Widening Aggrading Bank Failure Culvert Scour (upstream / downstream / top) Headcutting Bank scour Slope failure None (natural stabile channel)					
Channel Dimensions (facing downstream): 500 FB-2					
Lt bank Ht: (ft) Bankfull Depth(ft) Wetted Width: (ft) Riffle/Run Depth(ft) Rt bank Ht: (ft) Bankfull Width(ft)) TOB Width: (ft) Pool Depth(ft)					
Channel Stability:					
Good: Open area in public ownership. Fair: Forested or developed near Difficult: Must cross wetland, steep slope, heavy forest or					
Easy stream channel access by vehicle. Stream. Vehicle access limited. sensitive areas to get to stream. Access by rootArv only.					
Notes: (biggest problem(s) you see in survey reach)					
Place sketch of reach on back of page.					

Appendix D Non-Point Source Matrix

Ranking of sub-watersheds based on NPS issue (Combined Phases)

i k									
	TSS	Nutrient		Imapcted	Bank			Unpaved	total
Rank #	Loading	Loading	%pasture	riparian	erosion	Cattle	Poultry	Roads	possible
٦	MFC-1	MFC-1	WC-1	LC-2	LLC-2	LC-1	ł	LC-2	21
2	LLC-2	LC-1	LLC-1	WC-1	JC-1	WC-1	ł	LLC-2	14
ŝ	LC-1	LLC-2	LC-2	MFC-1	MFC-1	CC-1	ł	WC-1	7
4	JC-1	CC-1	CC-1	CC-1	LC-2	LC-2	4	LC-1	
ß	CC-1	LLC-1	LC-1	LLC-2	LC-1	LLC-1	ł	LLC-1	
9									42
7									
00									

ŝ
¥
2
6
<u> </u>
-
N
×
E.
E.
Ш
N
- 2
∇
Ē
ia.
10
<u> </u>
S
ഇ
÷.
¥.
E.
Ľ
Ξ
ō
£
50
Ē
Ξ.
8
പ്
×
E.
Ħ
Š
ے

	-	2	'n	Total
NC-1	3	4	1	∞
LC-1	0	2	0	2
LC-2	ß	4	r-1	œ
CC-1	0	0	1	1
-C-2	9	0	1	2
-C-1	3	2	1	9
MFC-1	9	0	2	8
C-1	0	2	0	2
			Total:	42

Appendix E WTM Modeling

This table summarizes the pollutant loads and runoff volumes from Unc purple cells summarize loads from each broad category of sources. No loads during storm events (i.e., the Storm Load) and the loads occurring	ontrolled pollutant so te that, while the sumr during dry weather co	ources, including both t mary table presents on inditions (i.e., the Non-	he Primary Sources an ly the Total Surface Wa Stormwater Load)	d Secondary Sources included in the iter loads, this table also breaks out	e "Sources" tab_ The the difference between
	Source Load	ds (Without P	ractices)		
	Prir	nary Sources			
	TN (lb/year)	TP (lb/year)	TSS (Ib/year)	Fecal Coliform (billion/year)	Runoff Volume (acre- feet/year)
LDR (<1du/acre)	1,631	241	38,050	70,782	288
MDR (1-4 du/acre)	35	5	813	1,513	6
HUR (>4 du/acre)	0	0	0	0	0
Wutthamily	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Commercial	0	0	0	0	0
Commercial	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Roadway	24	12	79,910	0	67
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Industrial	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Forest	19 597	1.487	742 470	90.010	0
1 0100	0	0	0	09,210	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Rural	8,165	1,243	177,500	69,225	234
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	
Open Water	51	2	820	ő	0
Active Construction	0	0	0	0	0
Total Surface Water Primary Source Load	28,493	2,989	1,040.363	230,736	1,573
Primary Source Storm Load	15,117	2,170	948,266	230,736	1.573
Primary Source Non-Stormwater Load	13,376	819	92,097	0	0
	Seco	ndary Source	S		
Secondary Load to Surface Waters					
OSDSs - Surface	34	6	229	989	0
SSOs	0	0	0	0	Ö
CSOs	0	0	0	Ū	0
Illicit Connections	0	0	0	0	0
Channel Erosion	2,520	1,260	1,800,000	0	0
Modby Farms/Livestock	0	0	0	0	0
Road Sanding	0	0	0	0	0
Point Source Discharges	0	0	0	0	0
Total Surface Water Secondary Source Surface Load	2.554	1.266	1.800,229	369	0
Secondary Source Storm Load	2,520	1,260	1,800.000	0	0
Secondary Source Non-Stormwater Load	34	6	229	369	0
Secondary Load to Groundwater					
OSDSs- Subsurface	382	8	0	0	0
Total Groundwater Load	382	8	0	0	0

Final w/ bunks a unpaved roads 9/19/14

.

	Source Load	ds (Without P	actices)		
	Prir	mary Sources			
	TN (lb/year)	TP (lb/year)	TSS (Ib/year)	Fecal Coliform (billion/year)	Runoff Volume (acre- feet/year)
LDR (<1du/acre)	4,288	633	100,051	186,115	753
MDR (1-4 du/acre)	147	22	3,429	6,378	26
HDR (>4 du/acre)	0	0	0	0	0
Multiramily	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Communial .	0	0	0	0	0
Commercial	0	0	0	0	.0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Roadway	58	29	194,115	0	162
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Industrial	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Forest	42,221	3,378	1,688,840	202,661	2.280
	0	0	D	0	0
	0	0	0	0	0
	0	0	0	0	0
Rural	24.950	3 797	542 400	211.536	792
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	Ö	Ö	0
	0	0	0	0	.0
0	0	.0	0	0	0
Active Construction	116	5	1,395	0	0
Total Surface Water Primary Source Load	71 780	7 861	2 530 230	606 591	3 953
Primary Source Storm Load	38,194	5710	2.307.106	606 691	3 953
Primary Source Non-Stormwater Load	33,586	2,152	223.124	0	0
	Seco	ndary Source	6		
Secondary Load to Surface Waters	0000	induly bource	0		
OSDSs - Surface	81	14	543	874	0
SSOs	0	0	0	0	0
CSOs	0	0	0	0	0
Illicit Connections	0	0	0	0	0
Channel Erosion	4,057	2,029	2,898,000	0	0
Hobby Farms/Livestock	0	0	0	0	0
Road Sanding	0	0	ů.	0	0
Point Source Discharges	0	0	0	0	0
Total Surface Water Secondary Source Surface Load	4,139	2,042	2,898,543	874	0
Secondary Source Storm Load	4,057	2,029	2,898,000	0	0
Secondary Source Non-Stormwater Load	81	14	543	874	0
Secondary Load to Groundwater					
OSDSs- Subsurface	905	20	0	0	0
Total Groundwater Load	905	20	0	0	0

1.11

÷

	Source Loa	ds (Without P	ractices)		
	Prir	nary Sources			
	TN ((b/year)	TP (lb/year)	TSS (lb/year)	Fecal Coliform (billion/year)	Runoff Volume (acre- feet/year)
LDR (<1du/acre)	10,534	1,555	245,800	457,241	1,850
MDR (1-4 du/acre)	335	49	7,815	14,538	59
HDR (>4 du/acre)	0	0	0	0	Q
Multifamily	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Commercial	0	0	0	0	0
Commercial	0	0	0	0	0
	0	0	Ő	Ö	0
	0	0	0	0	0
Burden	0	0	0	0	0
Roadway	192	96	639,963	0	537
	0	0	0	0	0
	0	0	Q	0	Ő
	0	0	0	0	0
Industrial	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Forest	153,186	12,255	6,127,440	735,293	9,926
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Rural	58,912	8,965	1,280,700	499,473	2,075
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	Ö	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Open Water	4.019	157	48.670	0	0
Active Construction	0	0	0	0	0
Total Surface Water Primary Source Load	227,179	23,077	8,350,389	1,706,544	14,447
Primary Source Storm Load	121,129	16,711	7,609,575	1,706,544	14,447
Primary Source Non-Stormwater Load	106,049	6,366	740,814	0	0
mediates and the set of the set	Seco	ndary Source	S		
Secondary Load to Surface Waters					
OSDSs - Surface	367	61	2,449	3,945	0
SSOs	0	0	۵	0	0
CSOs	0	0	0	0	0
Channel Erosion	5.048	2 524	3 808 000	0	0
Hobby Farms/Livestock	0	0	0,000,000	0	0
Marinas	0	0	0	0	0
Road Sanding	0	0	0	0	0
Point Source Discharges	0	0	0	0	0
Secondary Source Surface Load	5,416	2,585	3,608,449	3,945	0
Secondary Source Storm Load	5,048	2,024	3,606,000	0	0
Secondary Source Non-Stormwater Load	36/	67	2,449	3,945	0
OSDSe Subsurface	4.094	00		1	Ē
Total Groundwater Load	4,001	90	0	0	0
	-1001		-	V V	0

	Source Loa	ds (Without P	ractices)		L
	Prir	mary Sources			
	TN (Ib/year)	TP (lb/year)	TSS (lb/year)	Fecal Coliform (billion/year)	Runoff Volume (acre- feet/year)
LDR (<1du/acre)	9,373	1,384	218,706	406,839	1.646
MDR (1-4 du/acre)	314	48	7,326	13,627	55
HDR (>4 du/acre)	0	0	0	0	Ó
Multifamily	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	Ö	0
	0	0	0	0	0
Commercial	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Roadway	245	123	817.617	i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	685
	0	0	0	0	0
	0	0	0	0	0
	0	0	- 0	0	0
Industrial	0	0	0	0	0
industrial	0	0	0	0	0
	0	0	0	0	0
	0	0	Ö	0	0
	0	0	0	0	0
Forest	131,254	10,500	5,250,160	630,019	7,560
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Rural	34,882	5 308	758 300	295.737	1.092
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Open Water	2,624	103	31,775	0	0
Active Construction	0	0	0	0	0
Total Surface Water Primary Source Load	178,692	17,464	7,083,883	1,346,223	11,038
Primary Source Storm Load	95,624	12,721	6,483,037	1,346.223	11,038
Primary Source Non-Stormwater Load	83,068	4.743	600,846	0	0
	Seco	ndary Source	S		
Secondary Load to Surface Waters					
OSDSs - Surface	811	135	5.405	8,705	0
SSOs	0	0	0	0	0
CSOs	0	0	0	0	0
Illicit Connections	0	0	0	0	0
Channel Erosion	7,748	3,874	5,534,000	0	0
Marinas	864	144	0	31,680	0
Road Sanding	0	0	0	0	0
Point Source Discharges	0	0	0	ő	0
Total Surface Water Secondary Source Surface Load	9,422	4.153	5.539,405	40.385	0
Secondary Source Storm Load	8,612	4,018	5.534.000	31,680	0
Secondary Source Non-Stormwater Load	811	135	5,405	8,705	0
Secondary Load to Groundwater				0,100	
OSDSs- Subsurface	9,007	199	0	0	0
Total Groundwater Load	9,007	199	0	0	0
	434				-

	Source Load	ds (Without P	ractices)		
	Prir	mary Sources		8	
	TN (lb/year)	TP (Ib/year)	TSS (lb/year)	Fecal Coliform (billion/year)	Runoff Volume (acre- feet/year)
LDR (<1du/acre)	18,085	2,670	421,978	784,969	3,175
MDR (1-4 du/acre)	325	48	7,575	14,091	57
HDR (>4 du/acre)	0	0	0	0	0
Multitamily	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Commercial	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Roadway	0	AE .	200.710	0	0
Noduway	0	45	290,710	0	250
	Ő	0	0	0	0
	0	Ö	0	0	0
	0	0	0	0	Ö
Industrial	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Forest	300 125	24.010	10 004 000	0	0
Forest	0	24,010	12,004,990	1,440,599	16,423
	0	0	0	0	0
	0	0	Ő	0	0
	0	0	0	0	0
Rural	131,891	20,070	2,867,200	1,118,208	3,922
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Open Water	35,277	1,378	427,180	0	0
Active Construction	0	0	0	0	0
Total Surface Water Primary Source Load	485,792	48,221	16,027,641	3,357,868	23,827
Primary Source Storm Load	269,784	34,997	14,540,422	3,357,868	23,827
Primary Source Non-Stormwater Load	216,008	13.224	1,487,219	0	0
	Seco	ndary Source	S		
Secondary Load to Surface Waters			-		
OSDSs - Surface	338	58 1	2 268	2 624	0
SSOs	0	0	2,200	0	0
CSOs	0	0	0	0	0
Illicit Connections	0	0	0	0	0
Channel Erosion	9,794	4,897	6,996,000	0	0
Hobby Farms/Livestock	0	0	0	0	0
Marinas	0	0	0	0	0
Road Sanding Reint Source Distances	0	0	0	0	0
Total Surface Water Secondary Source Discharges	0	0	0	0	0
Secondary Source Surrace Load	10,133	4,954	6,998,256	3,634	0
Secondary Source Storm Load	9,794	4,897	6,996,000	0	0
Secondary Source Non-Stormwater Load	338	56	2,256	3,634	0
Secondary Load to Groundwater					
OSDSs- Subsurface	3,760	83	0	0	0
Total Groundwater Load	3,760	83	0	0	0

a.

	Source Load	ds (Without P	ractices)	Section and the	
	Prir	nary Sources			
	TN (lb/year)	TP (lb/year)	TSS (lb/year)	Fecal Coliform (billion/year)	Runoff Volume (acre- feet/year)
LDR (<1du/acre)	4,289	633	100,083	186,177	753
MDR (1-4 du/acre)	49	7	1,142	2,125	9
HDR (>4 du/acre)	0	0	0	0	0
wuluramily	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Commercial	0	0	0	0	0
Conincidi	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	.0
Roadway	45	22	148,845	0	124
	0	0	0	0	
	0	0	0	0	0
	0	0	0	0	0
Industrial	0	0	0	Ö	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Forest	72,082	5,767	2,883,260	345,991	3.737
	0	0	0	Ö	0
	0	0	0	0	0
	0	0	0	0	0
Rural	21.546	3 970	469.400	192.678	807
	0	0	400,400	0	0
	0	0	Ö	0	Ö
	0	0	0	0	0
	0	0	0	0	.0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	ő	0
	0	0	0	0	0
Open Water	397	16	4,805	0	0
Active Construction	0	0	0	0	0
Total Surface water Primary Source Load	98,408	9,724	3,606,535	716,968	5,230
Primary Source Storm Load	51,594	7,010	3,271,369	715,968	5,230
Primary Source Non-Stormwater Load	46,814	2,/14	335,166	0	0
	Seco	ndary Source	S		
Secondary Load to Surface Waters					
OSDSs - Surface	331	55	2,208	3,556	0
SSOs	0	0	0	0	0
USUS Illicit Connections	0	0	0	0	0
Channel Erosion	2 500	1 250	1 786 000	0	0
Hobby Farms/Livestock	5.184	864	0	190,080	0
Marinas	0	0	0	0	0
Road Sanding	0	0	0	0	0
Point Source Discharges	0	0	0	0	D
I otal Surface Water Secondary Source Surface Load	8,016	2,169	1,788,208	193,636	0
Secondary Source Storm Load	7,684	2,114	1,786,000	190,080	0
Secondary Source Non-Stormwater Load	331	55	2,208	3,556	0
Secondary Load to Groundwater					
OSDSs- Subsurface	3,679	81	0	0	0
I otal Groundwater Load	3,879	81	0	0	0

	Source Loa	ds (Without P	ractices)		
	Prir	mary Sources			
	TN (lb/year)	TP (lb/year)	TSS (lb/year)	Fecal Coliform (billion/year)	Runoff Volume (acre- feet/year)
LDR (<1du/acre)	3,619	534	84,452	157.098	636
MDR (1-4 du/acre)	70	10	1,629	3,031	12
HDR (>4 du/acre)	0	0	0	0	0
Muluramily	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	Ō	0	0	0	0
	0	0	0	0	Ò
	0	0	0	0	0
Commercial	0	0	0	0	0
	0	0	0	0	0
	Ū	0	0	0	ő
	0	0	0	0	0
Roadway	55	28	183,827	0	154
	0	0	0	0	0
	0	0	0	0	0
	0	0	ö	0	0
Industrial	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Forest	53,341	4.267	2.133.640	256.037	2.842
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Rural	14.982	2,280	325 700	127.023	434
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Contraction of the second s	0	0	0	0	0
	0	0	0	0	0
	0	0	ő	0	0
	0	0	0	0	0
Orace Webe	0	0	0	0	0
Active Construction	461	18	5,580	0	0
Total Surface Water Primary Source Load	72 528	7 137	2 724 829	543 490	4.077
Primary Source Storm Load	38 367	5 173	2 488 894	643 189	4.077
Primary Source Non-Stormwater Load	34,162	1.964	245.934	0	0
	Seco	ndary Source	C		•
Secondary Load to Surface Waters	0000	indary oburce	3		
OSDSs - Surface	217	36	1 448	6.000	0
SSOs	0	0	0	0	0
CSOs	0	0	0	0	0
Illicit Connections	0	0	0	0	0
Channel Erosion	5,186	2,593	3,704,000	0	0
HODDy Farms/Livestock	0	0	0	0	0
Road Sanding	0	0	0	0	0
Point Source Discharges	0	0	Ō	0	0
Total Surface Water Secondary Source Surface Load	5,403	2,629	3,705,448	2,332	0
Secondary Source Storm Load	5,186	2,593	3,704,000	0	0
Secondary Source Non-Stormwater Load	217	36	1,448	2.332	0
Secondary Load to Groundwater					
OSDSs- Subsurface	2,413	53	0	0	0
Total Groundwater Load	2,413	53	0	Ø	0

	Source Load	ds (Without P	ractices)	_	
	Prir	mary Sources			in a second second
	TN (Ib/year)	TP (lb/year)	TSS (lb/year)	Fecal Coliform (billion/year)	Runoff Volume (acre- feet/year)
LDR (<1du/acre)	5,731	846	133,719	248,747	1,006
MDR (1-4 du/acre)	779	115	18,175	33,808	137
HDR (>4 du/acre)	0	0	0	0	0
Multifamily	0	0	0	0	0
	0	0	0		0
	0	0	0	0	0
	0	0	0	0	0
	0	0	Q	0	0
	0	0	0	0	0
Commercial	0	0	0.	0	0
	0	0	0	0	0
	0	0	0	Ö	0
	0	0	0	0	0
Roadway	112	58	371,769	0	312
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Industrial	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Forget	0	0	0	0	0
FOIESL	39,017	3,109	1,564,660	190,159	2,539
	0	0	0	0	0
	0	0	Ö	Ő	0
	0	0	0	Û.	0
Rural	33,069	5,032	718,900	280,371	1,152
	0	0	0	0	0
	0	0	0		
	0	0	0	0	0
	0	.0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
Open Water	410	18	4,060	0	0
Active Construction	0	0	4,900	0	0
Total Surface Water Primary Source Load	79.717	9.234	2.832.183	753.085	5.145
Primary Source Storm Load	43.374	6.774	2,601,827	753 085	5.145
Primary Source Non-Stormwater Load	36.343	2.460	230,356	0	0
	Seco	ndany Source	e		
Secondary Load to Surface Waters	0000	indary obtailed	3		
OSDSs - Surface	1 110	100	7 467	10.000	
SSOs	0	0	1,407	12,008	0
CSOs	0	0	0	0	0
Illicit Connections	0	0	0	0	0
Channel Erosion	1,140	570	814,000	0	0
Hobby Farms/Livestock	2,160	360	0	79,200	0
Road Sanding	0	0	0	0	0
Point Source Discharges	0	0	0	0	0
Total Surface Water Secondary Source Surface Load	4 418	1 116	821 457	91/208	0
Secondary Source Storm Load	3 300	930	814 000	79 200	0
Secondary Source Non-Stormwater Load	1,118	186	7 457	12 008	0
Secondary Load to Groundwater	1,110	100	1,401	12,000	
OSDSs- Subsurface	12.425	275	0	0	0
Total Groundwater Load	12,425	275	0	0	0

This table summarizes the Net pollutant load and runoff reductions achieved by practices included in the "Future Practices" tab. The reductions presented in this table include only the benefits beyond the practices already in place in the Existing Conditions. So, for example, an improvement to an existing education program would include only the additional load reduction achieved by improving the program. The purple cells summarize the total load reduction from all practices, while the grey cells report the benefits of individual practices. Note that, while the summary table presents only the Total Surface Water loads, this table also breaks out the reductions from loads during storm events (i.e., the Storm Load) and the loads occuring during dry weather conditions (i.e., the Non-Stormwater Load). In some cases, a negative load reduction may be reported. This represents an increase in load, which would occur if a program or practice was made less effective in the future condition.

Net I	Benefit (Load Re	eductions) of	Future Practice	s	
	TN (lbs/year)	TP (lbs/year)	TSS (lbs/year)	Bacteria (billion/year)	Runoff Reduction (acre- ft/yr)
Reductions to Surface Water Loads					
Lawn Care Education Surface	0	0	0	0	0
Pet Waste Education	0	0	0	0	0
Erosion and Sediment Control	0	0	0	0	0
Street Sweeping	0	0	0	0	0
Street Sweeping - Sanding	0	0	0	0	0
Structural Stormwater Management Practices	#REF!	#REF!	#REFI	#REF!	#REFI
Riparian Bulfers	48	13	2,779	1,692	8
Catch Basin Cleanouts	0	0	0	0	0
Marina Pumpouts	0	0	0	0	0
Urban Downsizing	0	0	0	0	0
Redevelopment With Improvements	0	0	0	0	0
Stormwater Retrofits	0	0	0	0	0
Illicit Connection Removal	0	0	0	0	0
CSO Repair/ Abatement	0	0	0	0	0
SSO Repair/ Abatement	0	0	0	0	0
OSDS Programs - Surface	5	1	35	56	0
Channel Protection	317	158	452,424	0	0
Point Source Reduction	0	0	0	0	0
Total Surface Water Reduction	370	172	455,238	1,748	8
Storm Load Reduction	364	172	455,203	1,692	8
Non-Storm Load Reduction	5	1	35	56	0
Reductions to Groundwater Loads					
Urban Land	0	0	0	0	0
OSDSs	-6	0	0	0	0
Total Groundwater Load Reduction	-57	7	0	0	0

This table summarizes the Net pollutant load and runoff reductions achieved by practices included in the "Future Practices" tab. The reductions presented in this table include only the benefits beyond the practices already in place in the Existing Conditions. So, for example, an improvement to an existing education program would include only the additional load reduction achieved by improving the program. The purple cells summarize the total load reduction from all practices, while the grey cells report the benefits of individual practices. Note that, while the summary table presents only the Total Surface Water loads, this table also breaks out the reductions from loads during storm events (i.e., the Storm Load) and the loads occuring during dry weather conditions (i.e., the Non-Stormwater Load). In some cases, a *negative load reduction* may be reported. This represents an *increase* in load, which would occur if a program or practice was made *less* effective in the future condition.

Net	Benefit (Load R	(eductions) of	Future Practice	8	
	TN (lbs/year)	TP (lbs/year)	TSS (lbs/year)	Bacteria (billion/year)	Runoff Reduction (acre- ft/yr)
Reductions to Surface Water Loads					
Lawn Care Education Surface	0	0	0	0	0
Pet Waste Education	0	0	0	0	0
Erosion and Sediment Control	0	0	0	0	0
Street Sweeping	0	0	Ö	0	0
Street Sweeping - Sanding	0	0	0	0	0
Structural Stormwater Management Practices	#REF!	#REF!	#REFI	#REF!	#REFI
Riparian Buffers	291	81	26,091	10,512	60
Catch Basin Cleanouts	0	0	0	0	0
Marina Pumpouts	0	0	0	0	0
Urban Downsizing	0	0	0	0	0
Redevelopment With Improvements	0	0	0	0	0
Stormwater Retrofits	0	0	0	0	0
Illicit Connection Removal	0	0	0	0	0
CSO Repair/ Abatement	0	0	0	0	0
SSO Repair/ Abatement	0	0	0	0	0
OSDS Programs - Surface	A 11 18 18 18 18 1 1	18976 x 21000 m	1 740 23028 VA 1943	行为这些注意的通道的最终的情况。 建築	0
Channel Protection	1.646	NELLER PERMAN SEL	2 2 207 882	ELLIN FORTE STORE AND	0
Point Source Reduction	0	0	0	0	0
Total Surface Water Reduction	1,960	875	2,234,777	11,838	60
Storm Load Reduction	1,836	855	2,233,953	10,512	60
Non-Storm Load Reduction	124	21	823	1,326	0
Reductions to Groundwater Loads					
Urban Land	0	0	0	0	0
OSDSs	-152	-3	0	0	0
Total Groundwater Load Reduction	-441	-8	0	0	0

This table summanizes the Net pollutent load and runoff reductions achieved by practices included in the "Future Practices" tab. The reductions presented in this table include only the benefits beyond the practices already in place in the Existing Conditions. So, for example, an improvement to an existing education program would include only the additional load reduction achieved by improving the program. The purple cells summarize the total load reduction from all practices, while the grey cells report the benefits of individual practices. Note that, while the summary table presents only the Total Surface Water loads, this table also breaks out the reductions from loads during storm events (i.e., the Storm Load) and the loads occuring during dry weather conditions (i.e., the Non-Stormwater Load). In some cases, a negative load reduction may be reported. This represents an increase in load, which would occur if a program or practice was made less effective in the future condition.

Net Benefit (Load Reductions) of Future Practices								
	TN (lbs/year)	TP (lbs/year)	TSS (lbs/year)	Bacteria (billion/year)	Runoff Reduction (acre- ft/vr)			
Reductions to Surface Water Loads								
Lawn Care Education Surface	0	0	Ő	0	0			
Pet Waste Education	0	0	0	0	Ö			
Erosion and Sediment Control	0	0	0	0	0			
Street Sweeping	0	0	0	0	0			
Street Sweeping - Sanding	0	0	0	0	0			
Structural Stormwater Management Practices	#REFI	#REF!	#REFI	#REFI	#REFI			
Riparian Buffers	561	153	18,571	20.376	89			
Catch Basin Cleanouts	0	0	0	0	0			
Marina Pumpouts	0	0	0	0	0			
Urban Downsizing	0	0	0	0	0			
Redevelopment With Improvements	0	0	0	0	0			
Stormwater Retrofits	292	94	10,768	10,170	35			
Illicit Connection Removal	0	0	0	0	0			
CSO Repair/ Abatement	0	0	0	0	0			
SSO Repair/ Abatement	0	0	0	0	0			
OSDS Programs - Surface	52	9	344	554	0			
Channel Protection	1,225	612	1,749,739	0	0			
Point Source Reduction	0	0	0	0	0			
Total Surface Water Reduction	2,129	888	1,779,420	31,100	124			
Storm Load Reduction	2,078	859	1,779,076	30,546	124			
Non-Storm Load Reduction	52	9	344	554	0			
Reductions to Groundwater Loads								
Urban Land	0	0	0	0	0			
OSDSs	-64	-1	0	0	0			
Total Groundwater Load Reduction	-840	-10	0	0	0			

This table summarizes the Net pollutant load and runoff reductions achieved by practices included in the "Future Practices" tab. The reductions presented in this table include only the benefits beyond the practices already in place in the Existing Conditions. So, for example, an improvement to an existing education program would include only the additional load reduction achieved by improving the program. The purple cells summarize the total load reduction from all practices, while the grey cells report the benefits of individual practices. Note that, while the summary table presents only the Total Surface Water loads, this table also breaks out the reductions from loads during storm events (i.e., the Storm Load) and the loads occuring during dry weather conditions (i.e., the Non-Stormwert Load). In some cases, a negative load reduction may be reported. This represents an increase in load, which would occur if a program or practice was made less effective in the future condition.

Net	enefit (Load Re	eductions) of	Future Practice	S	
	TN (lbs/year)	TP (lbs/year)	TSS (Ibs/year)	Bacteria (billion/year)	Runoff Reduction (acre- ft/yr)
Reductions to Surface Water Loads					
Lawn Care Education Surface	0	0	0	0	0
Pet Waste Education	0	0	0	0	0
Erosion and Sediment Control	0	0	0	0	0
Street Sweeping	0	0	0	0	.0
Street Sweeping - Sanding	0	0	0	0	0
Structural Stormwater Management Practices	#REF!	#REFI	#REF!	#REFI	#REFI
Riparian Buffers	122	33	6.896	4.331	21
Catch Basin Cleanouts	0	0	0	0	0
Marina Pumpouts	0	0	0	0	0
Urban Downsizing	0	0	0	0	0
Redevelopment With Improvements.	0	0	0	0	0
Stormwater Retrofits	0	0	Ó	0	0
Illicit Connection Removal	0	0	Ö	0	0
CSO Repair/ Abatement	0	0	0	0	0
SSO Repair/ Abatement	0	0	0	0	0
OSDS Programs - Surface	12	2	83	133	0
Channel Protection	508	254	726,400	0	0
Point Source Reduction	0	0	0	0	0
Total Surface Water Reduction	642	290	733,179	4,464	21
Storm Load Reduction	630	288	733,096	4,331	21
Non-Storm Load Reduction	12	2	83	133	0
Reductions to Groundwater Loads			1		
Urban Land	0	0	0	0	0
OSDSs	-15	0	0	0	0
Total Groundwater Load Reduction	-149	-3	0	0	0

This table summarizes the Net pollutant load and runoff reductions achieved by practices included in the "Future Practices" tab. The reductions presented in this table include only the banefits beyond the practices already in place in the Existing Conditions. So, for example, an improvement to an existing education program would include only the additional load reduction achieved by improving the program. The purple cells summarize the total load reduction from all practices, while the grey cells report the benefits of individual practices. Note that, while the summary table presents only the Total Surface Water loads, this table also breaks out the reductions from loads during storm events (i.e., the Storm Load) and the loads occuring during dry weather conditions (i.e., the Non-Stormwater Load). In some cases, a *negative load reduction* may be reported. This represents an *increase* in load, which would occur if a program or practice was made *less* effective in the future condition.

Net	Benefit (Load Re	eductions) of	Future Practice	s	
	TN (lbs/year)	TP (lbs/year)	TSS (Ibs/year)	Bacteria (billion/year)	Runoff Reduction (acre- ft/yr)
Reductions to Surface Water Loads					
Lawn Care Education Surface	0	0	0	0	0
Pet Waste Education	0	0	0	0	0
Erosion and Sediment Control	0	0	0	0	0
Street Sweeping	0	0	0	0	0
Street Sweeping - Sanding	0	0	0	0	0
Structural Stormwater Management Practices	#REFI	#REF!	#REF!	#REFI	#REFI
Ripanan Buffers	253	70	17,872	9,438	49
Catch Basin Cleanouts	0	0	0	.0	0
Marina Pumpouts	0	0	0	0	0
Urban Downsizing	Ô	0	0	0	0
Redevelopment With Improvements	0	0	0	0	0
Stormwater Retrofits	0	0	0	0	0
Illicit Connection Removal	0	0	0	0	0
CSO Repair/ Abatement	0	0	0	0	0
SSO Repair/ Abatement	0	0	0	0	0
OSDS Programs - Surface	56	9	373	601	0
Channel Protection	631	316	901.815	0	0
Point Source Reduction	0	0	0	0	0
Total Surface Water Reduction	940	395	920,060	10,036	49
Storm Load Reduction	884	386	919,687	9,436	49
Non-Storm Load Reduction	56	9	373	601	0
Reductions to Groundwater Loads				- Part	
Urban Land	0	0	0	0	0
OSDSs	-69	-2	0	Q	0
Total Groundwater Load Reduction	-382	-7	0	0	0

This table summarizes the Net pollutant load and runoff reductions achieved by practices included in the "Future Practices" tab. The reductions presented in this table include only the benefits beyond the practices already in place in the Existing Conditions. So, for example, an improvement to an existing education program would include only the additional load reduction achieved by improving the program. The purple cells summarize the total load reduction from all practices, while the grey cells report the benefits of individual practices. Note that, while the summary table presents only the Total Surface Water loads, this table also breaks out the reductions from loads during storm events (i.e., the Storm Load) and the loads occuring during dry weather conditions (i.e., the Non-Stormwater Load). In some cases, a *negative load reduction* may be reported. This represents an *increase* in load, which would occur if a program or practice was made *less* effective in the future condition.

Net	Benefit (Load Re	eductions) of	Future Practice	es	
	TN (lbs/year)	TP (lbs/year)	TSS (Ibs/year)	Bacteria (billion/year)	Runoff Reduction (acre- ft/yr)
Reductions to Surface Water Loads					
Lawn Care Education Surface	Ó	0	0	0	0
Pet Waste Education	0	0	0	0	0
Erosion and Sediment Control	0	0	0	0	0
Street Sweeping	0	0	0	0	0
Street Sweeping - Sanding	0	0	0	0	0
Structural Stormwater Management Practices	#REFI	#REF!	#REFI	#REFI	#REF!
Riparian Bulfers	214	59	10,128	7.626	36
Catch Basin Cleanouts	0	0	0	0	0
Marina Pumpouts	0	0	0	0	0
Urban Downsizing	0	0	0	0	0
Redevelopment With Improvements	0	0	0	0	0
Stormwater Retrofits	0	0	0	0	0
Illicit Connection Removal	0	0	0	0	0
CSO Repair/ Abatement	0	0	0	0	0
SSO Repair/ Abatement	0	0	0	0	0
OSDS Programs - Surface	50	8	336	542	0
Channel Protection	316	158	451,500	0	0
Point Source Reduction	0	0	0	0	0
Total Surface Water Reduction	580	225	461,964	8,168	36
Storm Load Reduction	530	217	461,628	7,626	36
Non-Storm Load Reduction	50	8	336	542	0
Reductions to Groundwater Loads					
Urban Land	0	0	0	0	0
OSDSs	-62	-1	0	0	0
Total Groundwater Load Reduction	-258	-6	0	0	0

This table summarizes the Net pollutant load and runoff reductions achieved by practices included in the "Future Practices" tab. The reductions presented in this table include only the benefits beyond the practices already in place in the Existing Conditions. So, for example, an improvement to an existing education program would include only the additional load reduction achieved by improving the program. The purple cells summarize the total load reduction from all practices, while the grey cells report the benefits of individual practices. Note that, while the summary table presents only the Total Surface Water loads, this table also breaks out the reductions from loads during storm events (i.e., the Storm Load) and the loads occuring during dry weather conditions (i.e., the Non-Stormwater Load). In some cases, a negative load reduction may be reported. This represents an increase in load, which would occur if a program or practice was made fess effective in the future condition.

Net	Benefit (Load Re	eductions) of	Future Practice	es	
-	TN (Ibs/year)	TP (lbs/year)	TSS (lbs/year)	Bacteria (billion/year)	Runoff Reduction (acre- ft/yr)
Reductions to Surface Water Loads					
Lawn Care Education Surface	0	0	-0	0	0
Pet Waste Education	0	0	0	0	0
Erosion and Sediment Control	0	0	0	0	0
Street Sweeping	0	0	0	0	0
Street Sweeping - Sanding	0	0	0	0	0
Structural Stormwater Management Practices	#REF!	#REF!	#REFI	WREF!	#REF!
Riparian Buffers	104	29	6,208	3,683	18
Catch Basin Cleanouts	0	0	0	0	0
Marina Pumpouts	0	0	0	0	0
Urban Downsizing	0	0	0	0	0
Redevelopment With Improvements	0	0	0	0	0
Stormwater Retrofits	104	34	7,164	3.377	11
Illicit Connection Removal	0	0	0	0	0
CSO Repair/ Abatement	0	0	0	0	0
SSO Repair/ Abatement	0	0	0	0	0
OSDS Programs - Surface	33	6	221	355	0
Channel Protection	1,032	516	1,474,110	0	0
Point Source Reduction	0	0	0	0	0
Total Surface Water Reduction	1,273	584	1,487,702	7.415	30
Storm Load Reduction	1,239	578	1,487,482	7.060	30
Non-Storm Load Reduction	33	6	221	355	0
Reductions to Groundwater Loads					-
Urban Land	0	0	0	0	0
OSDSs	-41	-1	0	0	0
Total Groundwater Load Reduction	-162	-3	0	0	0

This table summarizes the Net pollutant load and runoff reductions achieved by practices included in the "Future Practices" tab. The reductions presented in this table include only the benefits beyond the practices already in place in the Existing Conditions. So, for example, an improvement to an existing education program would include only the additional load reduction achieved by improving the program. The purple cells summarize the total load reduction from all practices, while the grey cells report the benefits of individual practices. Note that, while the summary table presents only the Total Surface Water loads, this table also breaks out the reductions from loads during storm events (i.e., the Storm Load) and the loads occuring during dry weather conditions (i.e., the Non-Stormwater Load). In some cases, a negative load reduction may be reported. This represents an increase in load, which would occur if a program or practice was made less effective in the future condition.

Net E	Benefit (Load Re	eductions) of	Future Practice	8	
	TN (lbs/year)	TP (lbs/year)	TSS (lbs/year)	Bacteria (billion/year)	Runoff Reduction (acre- ft/yr)
Reductions to Surface Water Loads					
Lawn Care Education Surface	0	0	0	0	0
Pet Waste Education	0	0	0	0	0
Erosion and Sediment Control	0	0	0	0	0
Street Sweeping	0	0	0	0	0
Street Sweeping - Sanding	0	0	0	0	0
Structural Stormwater Management Practices	#REF!	#REFI	#REFI	#REF!	#REF!
Riparian Buffers	162	44	11,259	6,075	31
Catch Basin Cleanouts	0	0	0	0	0
Marina Pumpouts	0	0	0	0	0
Urban Downsizing	0	0	0	0	0
Redevelopment With Improvements	0	0	0	0	0
Stormwater Retrofits	144	48	11,500	4,930	17
Illicit Connection Removal	0	0	0	0	0
CSO Repair/ Abatement	0	0	0	0	0
SSO Repair/ Abatement	0	0	0	0	0
OSDS Programs - Surface	170	28	1,136	1.829	0
Channel Protection	143	71	204,036	0	0
Point Source Reduction	0	0	0	0	0
Total Surface Water Reduction	619	192	227,931	12,834	48
Storm Load Reduction	449	164	226,795	11,005	48
Non-Storm Load Reduction	170	28	1,136	1,829	0
Reductions to Groundwater Loads					
Urban Land	.0	0	0	0	0
OSDSs	-210	-5	0	0	0
Total Groundwater Load Reduction	-409	-8-	0	0	0

_
>
_
annual
bs
Ξ
n (1
on (I
ction (I
uction (I
duction (I
reduction (ll
S reduction (II

TSS reduction (lb	s annuall	۸) (۲							
			Su	b-watershe	d (TP Ib/ye	ar)			
Reuction source	JC-1	L-D-L	LLC-2	LC-1	LC-2	CC-1	MFC-1	WC-1	Total
Riparian buffer									
restoration	2,779	6,696	17,872	26,091	18,571	10,128	6,208	11,259	99,603
SW retrofits					10,766		7,164	11,500	29,430
Septic programs	35	83	373	823	344	336	221	1,136	3,351
Stream restoration	452,424	726,400	901,815	1,388,142	1,749,739	451,500	919,906	204,036	6,793,962
Unpaved road									
improvement			159,991	204,404				92,942	457,337
Ag BMPs			24,974		156,979			49,604	231,557
Total	455,238	733,179	1,105,025	1,619,460	1,936,399	461,964	933,499	370,477	7,615,240

Costs sheet

Reduction Action	Unit area (ft)	Unit area (acres)	Reduction (lbs)/UA	Cost/UA	Total cost	lbs reduced	Cost/lb reduced	Notes
Stream Restoration	29885		30-320 lb/ft	75	\$2,241,360.00	6,333,526	\$0.35	
								This is 50% buffered. More buffer will likely
Riparian restoration	29321	33.61	3.4 lb/ft	800/ac	\$26,880.00	99,603	\$0.27	not get much more reduction
Unpaved road improvement	830016	266.8	0.55 lb/ft	1.66/ft	\$1,375,500.00	457,337	\$3.01	
SW retrofits		342	86.06 lb/ac	1228/ac	\$420,000.00	29,430	\$14.27	
Agri BMPs		7746	29.89 lb/ac	206/ac	\$1,595,676.00	231,557	\$6.89	

Total

\$5,659,416.00 \$7,151,453.00